20£®ÔÚ¡°ÐÂÁãÊÛ¡±Ä£Ê½µÄ±³¾°Ï£¬Ä³´óÐÍÁãÊÛ¹«Ë¾ÍƹãÏßÏ·ֵ꣬¼Æ»®ÔÚSÊеÄAÇø¿ªÉè·Öµê£¬ÎªÁËÈ·¶¨ÔÚ¸ÃÇø¿ªÉè·ÖµêµÄ¸öÊý£¬¸Ã¹«Ë¾¶Ô¸ÃÊÐÒÑ¿ªÉè·ÖµêµÄÆäËûÇøµÄÊý¾Ý×÷Á˳õ²½´¦ÀíºóµÃµ½ÏÂÁбí¸ñ£®¼Çx±íʾÔÚ¸÷Çø¿ªÉè·ÖµêµÄ¸öÊý£¬y±íʾÕâx¸ö·ÖµêµÄÄêÊÕÈëÖ®ºÍ£®
x£¨¸ö£©23456
y£¨°ÙÍòÔª£©2.5344.56
£¨1£©¸Ã¹«Ë¾ÒѾ­¹ý³õ²½Åжϣ¬¿ÉÓÃÏßÐԻعéÄ£ÐÍÄâºÏyÓëxµÄ¹ØÏµ£¬Çóy¹ØÓÚxµÄÏßÐԻع鷽³Ì$y=\hat bx+a$£»
£¨2£©¼ÙÉè¸Ã¹«Ë¾ÔÚAÇø»ñµÃµÄ×ÜÄêÀûÈóz£¨µ¥Î»£º°ÙÍòÔª£©Óëx£¬yÖ®¼äµÄ¹ØÏµÎªz=y-0.05x2-1.4£¬Çë½áºÏ£¨1£©ÖеÄÏßÐԻع鷽³Ì£¬¹ÀËã¸Ã¹«Ë¾Ó¦ÔÚAÇø¿ªÉè¶àÉÙ¸ö·Öµêʱ£¬²ÅÄÜʹAÇøÆ½¾ùÿ¸ö·ÖµêµÄÄêÀûÈó×î´ó£¿
£¨²Î¿¼¹«Ê½£º$y=\hat bx+a$£¬ÆäÖÐ$\hat b=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline{xy}}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}=\frac{{\sum_{i=1}^n{£¨{{x_i}-\overline x}£©£¨{{y_i}-\overline y}£©}}}{{\sum_{i=1}^n{{{£¨{{x_i}-\overline x}£©}^2}}}}£¬a=\overline y-\hat b\overline x$£©

·ÖÎö £¨1£©½áºÏËù¸øÊý¾ÝÊ×ÏÈÇóµÃÑù±¾ÖÐÐĵ㣬Ȼºó½áºÏ»Ø¹é·½³ÌµÄ¼ÆË㹫ʽÇóµÃ $\widehat{b}£¬\hat{a}$£¬¾Ý´Ë¼´¿ÉÇóµÃ»Ø¹é·½³Ì£»
£¨2£©½áºÏ£¨1£©ÖеĽá¹ûÇóµÃÀûÈóº¯Êý£¬È»ºó½áºÏº¯ÊýµÄ½âÎöʽºÍ¶Ô¹´º¯ÊýµÄÐÔÖʼ´¿ÉÇóµÃËùÐ迪Éè·ÖµêµÄ¸öÊý£®

½â´ð ½â£º£¨1£©ÓɱíÖÐÊý¾ÝºÍ²Î¿¼Êý¾ÝµÃ£º$\overline x=4£¬\overline y=4$£¬
${\sum_{i=1}^5{£¨{{x_i}-\overline x}£©}^2}=10£¬\sum_{i=1}^5{£¨{{x_i}-\overline x}£©£¨{{y_i}-\overline y}£©}=8.5$£¬
¡à$\hat b=\frac{{\sum_{i=1}^n{£¨{{x_i}-\overline x}£©}£¨{{y_i}-\overline y}£©}}{{\sum_{i=1}^n{{{£¨{{x_i}-\overline x}£©}^2}}}}=\frac{8.5}{10}=0.85$
¡à$\hat a=\overline y-\hat b\overline x=4-4¡Á0.85=0.6$£¬
¡ày=0.85x+0.6£®
£¨2£©ÓÉÌâÒ⣬¿ÉÖª×ÜÊÕÈëµÄÔ¤±¨Öµ$\hat z$ÓëxÖ®¼äµÄ¹ØÏµÎª£º$\hat z=-0.05{x^2}+0.85x-0.8$£¬
Éè¸ÃÇøÃ¿¸ö·ÖµêµÄƽ¾ùÀûÈóΪt£¬Ôò$t=\frac{z}{x}$£¬
¹ÊtµÄÔ¤±¨Öµ$\hat t$ÓëxÖ®¼äµÄ¹ØÏµÎª$\hat t=-0.05x-\frac{0.8}{x}+0.85=-0.01£¨{5x+\frac{80}{x}}£©+0.85$£¬
Ôòµ±x=4ʱ£¬$\hat t$È¡µ½×î´óÖµ£¬
¹Ê¸Ã¹«Ë¾Ó¦¿ªÉè4¸ö·Öµêʱ£¬ÔÚ¸ÃÇøµÄÿ¸ö·ÖµêµÄƽ¾ùÀûÈó×î´ó£®

µãÆÀ ±¾Ì⿼²é»Ø¹é·½³ÌµÄÇó½â£¬º¯ÊýµÄʵ¼ÊÓ¦Óõȣ¬Öص㿼²éѧÉú¶Ô»ù´¡¸ÅÄîµÄÀí½âºÍ¼ÆËãÄÜÁ¦£¬ÊôÓÚ»ù´¡Ì⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®ÒÑ֪бÂÊΪ1µÄÖ±Ïßl¹ýÅ×ÎïÏßy=$\frac{1}{4}$x2µÄ½¹µã£¬½»¸ÃÅ×ÎïÏßÓÚA£¬BÁ½µã£¬ÔòA£¬BÖеãµÄºá×ø±êΪ£¨¡¡¡¡£©
A£®2$\sqrt{2}$B£®2C£®$\frac{5}{2}$D£®4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®ÒÑÖªa+b=2£¬b£¾0£¬µ±$\frac{1}{2|a|}$+$\frac{|a|}{b}$È¡×îСֵʱ£¬ÊµÊýaµÄÖµÊÇ-2»ò$\frac{2}{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®Èô³¤·½ÌåµÄÒ»¸ö¶¥µãÉÏÈýÌõÀⳤ·Ö±ðΪ3£¬4£¬5£®Ôò³¤·½ÌåÍâ½ÓÇòµÄ±íÃæ»ýΪ£¨¡¡¡¡£©
A£®40¦ÐB£®35¦ÐC£®50¦ÐD£®60¦Ð

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®Éè·Ç¸ºÊµÊýxºÍyÂú×ã$\left\{\begin{array}{l}x+y-2¡Ü0\\ x+2y-4¡Ü0\\ x+4y-4¡Ü0\end{array}\right.$£¬Ôòz=3x+yµÄ×î´óֵΪ£¨¡¡¡¡£©
A£®2B£®$\frac{14}{3}$C£®6D£®12

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

5£®ÔÚ${£¨1+x£©^3}{£¨1+\frac{1}{x}£©^4}$µÄÕ¹¿ªÊ½ÖУ¬º¬$\frac{1}{x^2}$µÄÏîµÄϵÊýΪ21£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®ÒÑÖªº¯Êý$f£¨x£©=\left\{\begin{array}{l}{lo{g_2}£¨{{x^2}-2ax+3a}£©£¬x¡Ý1}\\{1-{x^2}£¬x£¼1}\end{array}$µÄÖµÓòΪR£¬Ôò³£ÊýaµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®£¨-1£¬1]¡È[2£¬3£©B£®£¨-¡Þ£¬1]¡È[2£¬+¡Þ£©C£®£¨-1£¬1£©¡È[2£¬3£©D£®£¨-¡Þ£¬0]{1}¡È[2£¬3£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÒÑÖªÔ²ÐÄΪ£¨2£¬3£©µÄÔ²CÉϵĵ㵽ֱÏßx+y-3=0µÄ×î¶Ì¾àÀëΪ$\sqrt{2}$-1£®
£¨1£©ÇóÔ²CµÄ·½³Ì£»
£¨2£©¹ýµãN£¨-1£¬0£©µÄÖ±ÏßlÓëÔ²C½»ÓÚP£¬QÁ½µã£¬ÇÒ$\overrightarrow{OP}$•$\overrightarrow{OQ}$=12£¬ÆäÖÐOÎª×ø±êÔ­µã£¬Çó¡÷OPQµÄÃæ»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

10£®ÒÑÖªÊýÁÐ{an}ÊǵȲîÊýÁУ¬SnÊÇÆäǰnÏîºÍ£®Èôa4+a5+a6=21£¬ÔòS9=63£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸