分析 先求出f($\frac{1}{4}$)=$lo{g}_{2}\frac{1}{4}$=-2,从而$f({f({\frac{1}{4}})})$=f(-2),由此能求出结果.
解答 解:∵函数$f(x)=\left\{\begin{array}{l}{log_2}x,x>0\\-\frac{1}{x},x<0\end{array}\right.$,
∴f($\frac{1}{4}$)=$lo{g}_{2}\frac{1}{4}$=-2,
$f({f({\frac{1}{4}})})$=f(-2)=-$\frac{1}{-2}$=$\frac{1}{2}$.
故答案为:$\frac{1}{2}$.
点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.
科目:高中数学 来源: 题型:选择题
| A. | $f(\frac{π}{2})<f(\frac{4π}{3})<f(\frac{π}{12})$ | B. | f($\frac{π}{12}$)<f($\frac{π}{2}$)<f($\frac{4π}{3}$) | C. | $f(\frac{π}{2})<f(\frac{π}{12})<f(\frac{4π}{3})$ | D. | $f(\frac{π}{12})<f(\frac{4π}{3})<f(\frac{π}{2})$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | 2 | C. | -2 | D. | -3 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{7}$ | B. | $\frac{3}{14}$ | C. | $\frac{1}{5}$ | D. | $\frac{3}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $[{-1,-\frac{1}{4}}]$ | B. | $[{-1,\frac{1}{5}}]$ | C. | $({-∞,-1}]∪[{\frac{1}{5},+∞})$ | D. | $[{-\frac{1}{4},\frac{1}{5}}]$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com