精英家教网 > 高中数学 > 题目详情
19.己知函数$f(x)=\left\{\begin{array}{l}{log_2}x,x>0\\-\frac{1}{x},x<0\end{array}\right.$,则$f({f({\frac{1}{4}})})$=$\frac{1}{2}$.

分析 先求出f($\frac{1}{4}$)=$lo{g}_{2}\frac{1}{4}$=-2,从而$f({f({\frac{1}{4}})})$=f(-2),由此能求出结果.

解答 解:∵函数$f(x)=\left\{\begin{array}{l}{log_2}x,x>0\\-\frac{1}{x},x<0\end{array}\right.$,
∴f($\frac{1}{4}$)=$lo{g}_{2}\frac{1}{4}$=-2,
$f({f({\frac{1}{4}})})$=f(-2)=-$\frac{1}{-2}$=$\frac{1}{2}$.
故答案为:$\frac{1}{2}$.

点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.设函数f(x)=sin(2x+φ)(φ是常数),若$f(0)=f(\frac{2π}{3})$,则$f(\frac{π}{12})$,$f(\frac{4π}{3})$,$f(\frac{π}{2})$之间的大小关系可能是(  )
A.$f(\frac{π}{2})<f(\frac{4π}{3})<f(\frac{π}{12})$B.f($\frac{π}{12}$)<f($\frac{π}{2}$)<f($\frac{4π}{3}$)C.$f(\frac{π}{2})<f(\frac{π}{12})<f(\frac{4π}{3})$D.$f(\frac{π}{12})<f(\frac{4π}{3})<f(\frac{π}{2})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知变量x,y满足约束条件$\left\{\begin{array}{l}x-y≤0\\ x+y≤2\\ x≥0\end{array}\right.$,若 z=ax+y的最大值为4,则a=(  )
A.3B.2C.-2D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.平面直角坐标系xOy中,曲线C1的方程是$\frac{x^2}{4}+\frac{y^2}{12}=1$,以O为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程是ρ=2cosθ-4sinθ.
(Ⅰ)写出C1的参数方程和C2的直角坐标方程;
(Ⅱ)设C2与x轴的一个交点是P(m,0)(m>0),经过P斜率为1的直线l交C1于A,B两点,根据(Ⅰ)中你得到的参数方程,求|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.我国齐梁时代的数学家祖暅(公元前5-6世纪,祖冲之之子)提出了一条原理:“幂势既同,则积不容异”,这个原理的意思是:两个等高的几何体若在所有等高处的水平截面的面积相等,则这两个几何体的体积相等.该原理在西方直到十七世纪才由意大利数学家卡瓦列利发现,比祖暅晚一千一百多年.椭球体是椭圆绕其轴旋转所成的旋转体,如图,将底面直径都为2b,高皆为a的椭半球体和已被挖去了圆锥体的圆柱体放置于同一平面β上,用平行于平面β且与平面β任意距离d处的平面截这两个几何体,可横截得到S及S两截面,可以证明S=S总成立.据此,短轴长为$2\sqrt{3}$,长轴为5的椭球体的体积是10π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在极坐标系中,已知直线l的方程为ρsin(θ-$\frac{π}{4}$)=$\frac{\sqrt{2}}{2}$,曲线C的方程为ρ=4sinθ,若直线l与曲线C相交于A,B两点,求线段AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.某博物馆需要志愿者协助工作,若从6名志愿者中任选3名,则其中甲、乙两名志愿者恰好同时被选中的概率是$\frac{1}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知i是虚数单位,且m(1+i)=7+ni(m,n∈R),则$\frac{m+ni}{2m-ni}$的虚部等于(  )
A.$\frac{1}{7}$B.$\frac{3}{14}$C.$\frac{1}{5}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若直线y=k(x+2)上存在点(x,y)满足$\left\{\begin{array}{l}x-y≥0\\ x+y≤1\\ y≥-1\end{array}\right.$,则实数k的取值范围是(  )
A.$[{-1,-\frac{1}{4}}]$B.$[{-1,\frac{1}{5}}]$C.$({-∞,-1}]∪[{\frac{1}{5},+∞})$D.$[{-\frac{1}{4},\frac{1}{5}}]$

查看答案和解析>>

同步练习册答案