精英家教网 > 高中数学 > 题目详情
9.设函数f(x)=sin(2x+φ)(φ是常数),若$f(0)=f(\frac{2π}{3})$,则$f(\frac{π}{12})$,$f(\frac{4π}{3})$,$f(\frac{π}{2})$之间的大小关系可能是(  )
A.$f(\frac{π}{2})<f(\frac{4π}{3})<f(\frac{π}{12})$B.f($\frac{π}{12}$)<f($\frac{π}{2}$)<f($\frac{4π}{3}$)C.$f(\frac{π}{2})<f(\frac{π}{12})<f(\frac{4π}{3})$D.$f(\frac{π}{12})<f(\frac{4π}{3})<f(\frac{π}{2})$

分析 根据$f(0)=f(\frac{2π}{3})$,求出f(x)的解析式,即可比较$f(\frac{π}{12})$,$f(\frac{4π}{3})$,$f(\frac{π}{2})$之间的大小关系.

解答 解:函数f(x)=sin(2x+φ)
∵$f(0)=f(\frac{2π}{3})$,即f(x)的一条对称轴为x=$\frac{0+\frac{2π}{3}}{2}=\frac{π}{3}$.
令x=$\frac{π}{3}$时,取得最大值,即sin(2×$\frac{π}{3}$+φ)=1.
可得:$\frac{2π}{3}$+φ=$\frac{π}{2}+2kπ$,k∈Z.
解得:φ=$-\frac{π}{6}$+2kπ.k∈Z.
取φ=$-\frac{π}{6}$,
则函数f(x)=sin(2x-$\frac{π}{6}$)
那么:f($\frac{π}{12}$)=sin(2×$\frac{π}{12}$-$\frac{π}{6}$)=0.
f($\frac{4π}{3}$)=sin($2×\frac{4π}{3}-\frac{π}{6}$)=1,
f($\frac{π}{2}$)=sin($\frac{π}{2}×2-\frac{π}{6}$)=$\frac{1}{2}$.
∴f($\frac{π}{12}$)<f($\frac{π}{2}$)<f($\frac{4π}{3}$).
故选:B.

点评 本题考查了三角函数的化简计算能力.属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知双曲线${x}^{2}-\frac{{y}^{2}}{3}=1$的离心率为$\frac{m}{2}$,且抛物线y2=mx的焦点为F,点P(3,y0)(y0>0)在此抛物线上,M为线段PF的中点,则点M到该抛物线的准线的距离为(  )
A.3B.2C.$\frac{5}{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.某高中学校为了了解在校学生的身体健康状况,从全校学生中,随机抽取12名进行体质健康测试,测试成绩(百分制)以茎叶图形式表示如图:
根据学生体质健康标准,成绩不低于76的为优良.
(1)将频率视为概率,根据样本估计总体的思想,在该校学生中任选3人进行体质健康测试,求至少有1人成绩是“优良”的概率;
(2)从抽取的12人中随机选取3人,记ξ表示成绩“优良”的学生人数,求ξ的分布列及期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知函数y=$\frac{1}{3}$x3-ax2+x-5若函数在[2,+∞)上是增函数,则a的取值范围是a≤$\frac{5}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,在直三棱柱ABC-A1B1C1中,AB⊥侧面BB1C1C,E是CC1上的中点,且BC=1,BB1=2.
(Ⅰ)证明:B1E⊥平面ABE
(Ⅱ)若三棱锥A-BEA1的体积是$\frac{{\sqrt{3}}}{3}$,求异面直线AB和A1C1所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设m∈R,复数z=2m2-3m-5+(m2-2m-3)i,当m=$\frac{5}{2}$时,z为纯虚数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数f(x)=Asin(ωx+φ)(A,ω,φ均为正常数)的最小正周期为π,当x=$\frac{π}{6}$时,函数f(x)取得最大值,则下列结论正确的是(  )
A.f(2)<f(-2)<f(0)B.f(0)<f(2)<f(-2)C.f(-2)<f(0)<f(2)D.f(2)<f(0)<f(-2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,在棱台ABC-FED中,△DEF与△ABC分别是棱长为1与2的正三角形,平面ABC⊥平面BCDE,四边形BCDE为直角梯形,BC⊥CD,CD=1,N为CE中点,$\frac{|AM|}{|AF|}$=λ(λ∈R,λ>0).
(Ⅰ)是否存在实数λ使得MN∥平面ABC?若存在,求出λ的值;若不存在,请说明理由;
(Ⅱ)在 (Ⅰ)的条件下,求直线AN与平面BMN所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.己知函数$f(x)=\left\{\begin{array}{l}{log_2}x,x>0\\-\frac{1}{x},x<0\end{array}\right.$,则$f({f({\frac{1}{4}})})$=$\frac{1}{2}$.

查看答案和解析>>

同步练习册答案