分析 求导数得到f′(x)=x2-2ax+1,根据条件可得到f′(x)≥0在x∈[2,+∞)上恒成立,得到关于a的不等式组,这样即可解出a的范围,即得出实数a的取值范围.
解答 解:∵y=f(x)=$\frac{1}{3}$x3-ax2+x-5,
∴f′(x)=x2-2ax+1;
∵f(x)在[2,+∞)上是增函数;
∴f′(x)≥0在x∈[2,+∞)上恒成立;
∴△=4a2-4≤0,或$\left\{\begin{array}{l}{△={4a}^{2}-4>0}\\{a≤2}\\{f′(2)=5-4a≥0}\end{array}\right.$;
解得-1≤a≤1,或a≤$\frac{5}{4}$;
∴a≤$\frac{5}{4}$;
故答案为:a≤$\frac{5}{4}$.
点评 考查函数单调性和函数导数符号的关系,基本初等函数的求导,二次函数符号和判别式△的关系,要熟悉二次函数的图象.
科目:高中数学 来源: 题型:选择题
| A. | 2n | B. | n2 | C. | 22(n-1) | D. | nn |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 56种 | B. | 36种 | C. | 20种 | D. | 10种 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 有最大值为8 | B. | 是定值8 | C. | 有最大值为6 | D. | 是定值6 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $f(\frac{π}{2})<f(\frac{4π}{3})<f(\frac{π}{12})$ | B. | f($\frac{π}{12}$)<f($\frac{π}{2}$)<f($\frac{4π}{3}$) | C. | $f(\frac{π}{2})<f(\frac{π}{12})<f(\frac{4π}{3})$ | D. | $f(\frac{π}{12})<f(\frac{4π}{3})<f(\frac{π}{2})$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com