精英家教网 > 高中数学 > 题目详情

【题目】某校为了提高学生的身体素质,决定组建学校足球队,学校为了解学生的身体素质,对他们的体重进行了测量,将所得的数据整理后,画出了频率分布直方图(如图),已知图中从左到右3个小组的频率之比为1:2:3,其中第2小组的频数为12.
(1)求该校报名学生的总人数;
(2)从报名的学生中任选3人,设X表示体重超过60kg的学生人数,求X的数学期望.

【答案】解:(1)∵从左到右3个小组的频率之比为1:2:3,其中第2小组的频数为12.
∴从左到右3个小组的频数分别为6,12,18,共有36人,
第4,5小组的频率之和为(0.0375+0.0125)×5=0.25,
则前3小组的频率之和为1﹣0.25=0.75,
则该校报名学生的总人数为36÷0.75=48;
(2)第4,5小组的频数为48×0.25=12,
则体重超过60kg的学生人数为12+18=30,
则X=0,1,2,3,
则P(X=0)==≈0.047,P(X=1)==≈0.265,
P(X=2)=≈0.453,P(X=3)==≈0.235,
则EX=0×0.047+1×0.265+2×0.453+3×0.235=1.876,
即X的数学期望EX=1.876
【解析】(1)根据频数关系求出每段的频数即可求该校报名学生的总人数;
(2)X=0,1,2,3,求出每个变量对应的概率,即可得到结论.
【考点精析】根据题目的已知条件,利用频率分布直方图的相关知识可以得到问题的答案,需要掌握频率分布表和频率分布直方图,是对相同数据的两种不同表达方式.用紧凑的表格改变数据的排列方式和构成形式,可展示数据的分布情况.通过作图既可以从数据中提取信息,又可以利用图形传递信息.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的中心在原点,焦点在轴上,离心率为,且经过点,直线交椭圆于不同的两点

(1)求椭圆的方程;

(2)求的取值范围;

(3)若直线不过点,求证:直线的斜率互为相反数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,则不等式fx-2+fx2-4)<0的解集为(  )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数fx=|x-a|+x,其中a0

1)当a=3时,求不等式fx)≥x+4的解集;

2)若不等式fx)≥x+2a2x[13]恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若关于x的方程(x﹣1)4+mx﹣m﹣2=0各个实根x1 , x2…xk(k≤4,k∈N*)所对应的点(xi),(i=1,2,3…k)均在直线y=x的同侧,则实数m的取值范围是(  )
A.(﹣1,7)
B.(﹣∞,﹣7)U(﹣1,+∞)
C.(﹣7,1)
D.(﹣∞,1)U(7,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,某公路 一侧有一块空地 ,其中 .当地政府拟在中间开挖一个人工湖△OMN,其中MN都在边AB上(MN不与AB重合,MAN之间),且MON=30°.

(1)若M在距离A2 km处,求点MN之间的距离;

(2)为节省投入资金,人工湖△OMN的面积要尽可能小.试确定M的位置,使△OMN的面积最小,并求出最小面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量(sin xcos x)(cos xcos x)(21)

(1)若,求sin xcos x的值;

(2)若0<x≤,求函数f(x)=·的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】北方某市一次全市高中女生身高统计调查数据显示:全市20000名高中女生的身高(单位:)服从正态分布.现从某高中女生中随机抽取50名测量身高,测量发现被测学生身高全部在之间,现将测量结果按如下方式分成6组:第1组,第2组,…,第6组,下图是按上述分组方法得到的频率分布直方图.

(1)求这50名女生身高不低于172的人数;

(2)在这50名女生身高不低于172的人中任意抽取2人,将该2人中身高排名(从高到低)在全市前260名的人数记为,求的数学期望.

参数数据:

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数处取得极值.

(1)求实数的值;

(2)若,试讨论的单调性.

查看答案和解析>>

同步练习册答案