分析 (Ⅰ)利用同角三角函数基本关系式化简所求,根据已知即可计算得解;
(Ⅱ)利用同角三角函数基本关系式化简所求,可得2sin2α-3sinαcosα=$\frac{2si{n}^{2}α-3sinαcosα}{si{n}^{2}α+co{s}^{2}α}$=$\frac{2ta{n}^{2}α-3tanα}{ta{n}^{2}α+1}$,根据已知即可计算得解;
解答 (本题满分为10分)
解:(Ⅰ)∵tanα=3,
∴$\frac{cosα-sinα}{cosα+sinα}=\frac{1-tanα}{1+tanα}=-\frac{1}{2}$;┅┅┅(5分)
(Ⅱ)∵tanα=3,
∴2sin2α-3sinαcosα=$\frac{2si{n}^{2}α-3sinαcosα}{si{n}^{2}α+co{s}^{2}α}$=$\frac{2ta{n}^{2}α-3tanα}{ta{n}^{2}α+1}$=$\frac{2×9-3×3}{9+1}$=$\frac{9}{10}$.┅┅┅(10分)
点评 本题主要考查了同角三角函数基本关系式在三角函数化简求值中的应用,考查了转化思想,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | $y=-\frac{1}{x}$ | B. | y=log3|x| | C. | y=1-x2 | D. | y=x3-1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | “第二次得到6点” | B. | “第二次的点数不超过3点” | ||
| C. | “第二次的点数是奇数” | D. | “两次得到的点数和是12” |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com