精英家教网 > 高中数学 > 题目详情
12.已知函数f(x)的定义域为R,对任意实数x,y满足f(x)=f(y)f(x-y),且f(1)=$\frac{8}{9}$.
(1)当n∈N*时,求证:数列{f(n)}是等比数列;
(2)设an=(n+1)•f(n),求和:a1+a2+a3+…+an

分析 (1)在已知函数等式中,取x=n+1,y=1,即可证得数列{f(n)}是等比数列;
(2)由(1)求出数列{f(n)}的通项公式,代入an=(n+1)•f(n),然后利用错位相减法求和.

解答 (1)证明:取x=n+1,y=1,则由f(x)=f(y)f(x-y),得
f(n+1)=f(1)•f(n)=$\frac{8}{9}f(n)$,
∴数列{f(n)}是以$\frac{8}{9}$为首项,以$\frac{8}{9}$为公比的等比数列;
(2)解:由(1)知,f(n)=$(\frac{8}{9})^{n}$,
an=(n+1)•f(n)=(n+1)$•(\frac{8}{9})^{n}$,
则Sn=a1+a2+a3+…+an=$2×(\frac{8}{9})^{1}+3×(\frac{8}{9})^{2}+…+(n+1)(\frac{8}{9})^{n}$,
$\frac{8}{9}{S}_{n}=2×(\frac{8}{9})^{2}+3×(\frac{8}{9})^{3}+…+n(\frac{8}{9})^{n}+(n+1)(\frac{8}{9})^{n+1}$,
两式作差得:$\frac{1}{9}{S}_{n}=\frac{16}{9}+[(\frac{8}{9})^{2}+(\frac{8}{9})^{3}+…+(\frac{8}{9})^{n}]-(n+1)(\frac{8}{9})^{n+1}$=$\frac{16}{9}+\frac{\frac{64}{81}[1-(\frac{8}{9})^{n-1}]}{1-\frac{8}{9}}-(n+1)(\frac{8}{9})^{n+1}$.
∴${S}_{n}=80-\frac{512-64n}{9}•(\frac{8}{9})^{n-1}$.

点评 本题考查抽象函数的概念及其应用,考查了等比关系的确定,训练了错位相减法求数列的和,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.在平面直角坐标系xOy中,以O为极点,x正半轴为极轴建立极坐标系,则把极坐标(2,$\frac{2π}{3}$)化为平面直角坐标为(  )
A.$(-1,\sqrt{3})$B.$(-\sqrt{3},1)$C.$(1,-\sqrt{3})$D.$(\sqrt{3},-1)$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知tanα=3,求值:
(Ⅰ)$\frac{cosα-sinα}{cosα+sinα}$;
(Ⅱ)2sin2α-3sinαcosα.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.命题“若a<b,则ac2≤bc2”以及它的逆命题,否命题和逆否命题中,真命题的个数是(  )
A.0B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知tanθ=3,则$\frac{1-cos2θ+sin2θ}{1+cos2θ+sin2θ}$=3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知点F1(-3,0),F2(3,0),曲线上的动点M满足|MF1|-|MF2|=-4,则该曲线的方程为(  )
A.$\frac{y^2}{4}$-$\frac{x^2}{5}$=1(y≤-2)B.$\frac{y^2}{4}$-$\frac{x^2}{5}$=1C.$\frac{x^2}{4}$-$\frac{y^2}{5}$=1(x≤-2)D.$\frac{x^2}{4}$-$\frac{y^2}{5}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.数列{1+2n-1}的前n项和为n+2n-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下列结论中,错误的为(  )
A.对任意的x∈R,都有2x≥x2成立
B.存在实数x0,使得log${\;}_{\frac{1}{2}}$x0>x0
C.存在常数C,当x>C时,都有2x≥x2成立
D.存在实数x0,使得log${\;}_{\frac{1}{2}}$x0>2${\;}^{{x}_{0}}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知函数f(x)=sinx,则f′($\frac{π}{3}$)=$\frac{1}{2}$.

查看答案和解析>>

同步练习册答案