【题目】已知函数 ,
(1)求函数的单调区间;
(2)当时,判断函数,()有几个零点,并证明你的结论;
(3)设函数,若函数在为增函数,求实数的取值范围.
【答案】(1)单调增区间,单调减区间为,;(2)有2个零点,证明见解析;(3)
【解析】
对函数求导,利用导数的正负判断函数的单调区间即可;
函数有2个零点.根据函数的零点存在性定理即可证明;
记函数,求导后利用单调性求得,由零点存在性定理及单调性知存在唯一的,使,求得为分段函数,求导后分情况讨论:①当时,利用函数的单调性将问题转化为的问题;②当时,当时,在上恒成立,从而求得的取值范围.
(1)由题意知,,列表如下:
0 | 2 | ||||
| 0 | ||||
| 极小值 |
| 极大值 |
|
所以函数的单调增区间为,单调减区间为,.
(2)函数有2个零点.证明如下:
因为时,所以,
因为,所以在恒成立,在上单调递增,
由,,且在上单调递增且连续知,
函数在上仅有一个零点,
由(1)可得时,,
即,故时,,
所以,
由得,平方得,所以,
因为,所以在上恒成立,
所以函数在上单调递减,因为,所以,
由,,且在上单调递减且连续得
在上仅有一个零点,
综上可知:函数有2个零点.
(3)记函数,下面考察的符号.
求导得.
当时恒成立.
当时,因为,
所以.
∴在上恒成立,故在上单调递减.
∵,∴,又因为在上连续,
所以由函数的零点存在性定理得存在唯一的,使,
∴,
因为,所以
∴
因为函数在上单调递增,,
所以在,上恒成立.
①当时,在上恒成立,即在上恒成立.
记,则,
当变化时,,变化情况如下表:
| 极小值 |
|
∴,
故,即.
②当时,,当时,在上恒成立.
综合(1)(2)知, 实数的取值范围是.
科目:高中数学 来源: 题型:
【题目】如图,正三棱柱的所有棱长都为,是的中点,在边上,.
(1)证明:平面平面;
(2)若是侧面内的动点,且平面.
①在答题卡中作出点的轨迹,并说明轨迹的形状(不需要说明理由);
②求三棱锥的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图1,在四边形中,,,,.把沿着翻折至的位置,平面,连结,如图2.
(1)当时,证明:平面平面;
(2)当三棱锥的体积最大时,求点到平面的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】渭南市公安局交警支队依据《中华人民共和国道路交通安全法》第条规定:渭南城区所有主干道路凡机动车途经十字口或斑马线,无论转弯或者直行,遇有行人过马路,必须礼让行人.违反者将被处以元罚款,记分的行政处罚.下表是渭南市一主干路段,监控设备所抓拍的个月内,机动车驾驶员不“礼让斑马线”行为统计数据:
月份 | |||||
违章驾驶员人数 |
(1)请利用所给数据求违章人数与月份之间的回归直线方程;
(2)预测该路月份的不“礼让斑马线”违章驾驶员人数;
(3)若从表中、月份分别抽取人和人,然后再从中任选人进行交规调查,求拍到的两人恰好来自同一月份的概率.
参考公式:,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆: 和抛物线: , 为坐标原点.
(1)已知直线和圆相切,与抛物线交于两点,且满足,求直线的方程;
(2)过抛物线上一点作两直线和圆相切,且分别交抛物线于两点,若直线的斜率为,求点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知项数为的数列满足如下条件:①;②.若数列满足,其中则称为的“心灵契合数列”.
(I)数列1,5,9,11,15是否存在“心灵契合数列”若存在,写出其心灵契合数列,若不存在请说明理由;
(II)若为的“心灵契合数列”,判断数列的单调性,并予以证明;
(Ⅲ)已知数列存在“心灵契合数列”,且,,求m的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=|2x﹣a|+|x﹣a+1|.
(1)当a=4时,求解不等式f(x)≥8;
(2)已知关于x的不等式f(x)在R上恒成立,求参数a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com