精英家教网 > 高中数学 > 题目详情
在△ABC中,满足
(1)试判断△ABC的形状;
(2)当a=10,c=10时,求的值.
【答案】分析:(1)根据题设,可推断当a=b和a≠b两种情况.当a=b可推断△ABC为等腰三角形;当a≠b时通过正弦定理及题设,求得cot的值,进而求出A+B进而推断△ABC的形状.
(2)根据a=c排除△ABC为直角三角形的情况,根据(1)可知a=b,进而推断△ABC为等边三角形,进而求出∠A和的值.
解答:解:(1)∵
当a=b时,△ABC为等腰三角形
当a≠b时,根据正弦定理===tan
∴cot=1,即=,A+B=
∴△ABC为以C为直角的直角三角形.
∴△ABC为直角三角形或等腰三角形
(2)a=c=10,排除△ABC为直角三角形,则△ABC为等腰三角形,即a=b,
又a=c=10,所以a=c=b
∠A=60°
=tan30°=
点评:本题主要考查和差化积和同角三角函数的基本关系的应用.属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,满足tan
A-B
2
=
a-b
a+b

(1)试判断△ABC的形状;
(2)当a=10,c=10时,求tan
A
2
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,满足tanA•tanB>1,则这个三角形是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,满足(a-c)(sinA+sinC)=(a-b)sinB,且△ABC的外接圆半径为
2

(Ⅰ)求角C;
(Ⅱ)求△ABC面积S的最大值,并判断此时的三角形形状.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,满足:
AB
AC
,M是BC的中点.
(1)若|
AB
|=|
AC
|
,求向量
AB
+2
AC
与向量2
AB
+
AC
的夹角的余弦值;
(2)若点P是BC边上一点,|
AP
|=2
,且
AP
AC
=2
AP
AB
=2
,求|
AB
+
AC
+
AP
|
的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,满足
AB
AC
的夹角为60°,M是AB的中点,
(1)若|
AB
|=|
AC
|
,求向量
AB
+2
AC
AB
的夹角的余弦值;.
(2)若|
AB
|=2,|
BC
|=2
3
,点D在边AC上,且
AD
AC
,如果
MD
AC
=0
,求λ的值.

查看答案和解析>>

同步练习册答案