分析 由题意可得2n=64,解得n=6.z再利用$(\sqrt{x}-\frac{a}{x})^{6}$的通项公式即可得出.
解答 解:由题意可得2n=64,解得n=6.
∴$(\sqrt{x}-\frac{a}{x})^{6}$的通项公式Tr+1=${∁}_{6}^{r}$$(\sqrt{x})^{6-r}(-\frac{a}{x})^{r}$=(-a)r${∁}_{6}^{r}$${x}^{3-\frac{3r}{2}}$,
令3-$\frac{3r}{2}$=0,解得r=2.
∴常数项=$(-a)^{2}{∁}_{6}^{2}$=15,解得a=±1.
故答案为:±1.
点评 本题考查二项式定理的性质及其通项公式,考查了推理能力与计算能力,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | 5 | B. | 3 | C. | 1 | D. | 0 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{2π}{3}$ | D. | $\frac{5π}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $\frac{{\sqrt{3}}}{2}$ | C. | $\frac{1}{3}$ | D. | $\frac{{\sqrt{3}}}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 圆 | B. | 椭圆 | C. | 抛物线 | D. | 双曲线 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | $\sqrt{2}$ | C. | $\sqrt{3}$ | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{12}$ | B. | $\frac{π}{3}$ | C. | $\frac{5π}{12}$ | D. | $\frac{7π}{12}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com