精英家教网 > 高中数学 > 题目详情
8.设点A,B的坐标分别为(-6,0),(6,0),直线AM,BM相交于点M,且它们的斜率之积是$\frac{4}{9}$,则动点M的轨迹加上A,B两点所表示的曲线是(  )
A.B.椭圆C.抛物线D.双曲线

分析 设出点M的坐标,表示出直线AM、BM的斜率,进而求出它们的斜率之积,利用斜率之积是$\frac{4}{9}$,建立方程,即可得到点M的轨迹方程.

解答 解:设M(x,y),因为A(-6,0),B(6,0)
所以由已知,$\frac{y}{x+6}•\frac{y}{x-6}$=$\frac{4}{9}$
化简,得4x2-9y2=144(x≠±6)
动点M的轨迹加上A,B两点所表示的曲线是双曲线.
故选D.

点评 本题重点考查轨迹方程的求解,解题的关键是正确表示出直线AM、BM的斜率,利用条件建立方程.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.双曲线$\frac{x^2}{2}-\frac{y^2}{4}=1$渐近线的斜率为(  )
A.$±\frac{{\sqrt{2}}}{2}$B.$±\frac{1}{2}$C.$±\sqrt{2}$D.±2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知圆C1的圆心在坐标原点O,且恰好与直线l1:x-2y+3$\sqrt{5}$=0相切,设点A为圆上一动点,AM⊥x轴于点M,且动点N满足$\overrightarrow{MA}$=$\sqrt{3}$$\overrightarrow{MN}$,设动点N的轨迹为曲线C.
(Ⅰ)求曲线C的方程;
(Ⅱ)直线l与直线l1垂直且与曲线C交于B、D两点,求△OBD面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若${(\sqrt{x}-\frac{a}{x})^n}$展开式中所有二项式系数之和是64,常数项为15,则实数a的值是±1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.定义在R上的连续函数f(x)满足f(1)=2,且f(x)在R上的导函数f′(x)<1,则不等式f(x)<x+1的解集为{x|x>1}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.平面向量$\overrightarrow{a}$=(1,-2),$\overrightarrow{b}$=(-2,x),若$\overrightarrow{a}$⊥$\overrightarrow{b}$,则x=(  )
A.-1B.1C.-4D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.函数f(x)=Asin(ωx-$\frac{π}{3}$)(A>0,ω>0)的最大值为2,其图象相邻两条对称轴之间的距离为$\frac{π}{2}$.
(Ⅰ)求函数f(x)的最小正周期及解析式;
(Ⅱ)求函数f(x)的单调减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知A、B、C为△ABC的三内角,且其对边分别为a、b、c,若acosC+ccosA=-2bcosA.
(1)求角A的值;
(2)若a=2$\sqrt{3}$,b+c=4,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知曲线C:y=x3+5x2+3x.
(1)求曲线C导函数.
(2)求曲线C在x=1处的切线方程.

查看答案和解析>>

同步练习册答案