精英家教网 > 高中数学 > 题目详情
17.已知A、B、C为△ABC的三内角,且其对边分别为a、b、c,若acosC+ccosA=-2bcosA.
(1)求角A的值;
(2)若a=2$\sqrt{3}$,b+c=4,求△ABC的面积.

分析 (1)利用正弦定理、和差公式即可得出;
(2)利用余弦定理,结合条件可得bc=4,再利用三角形面积计算公式即可得出.

解答 解:(1)∵acosC+ccosA=-2bcosA,
由正弦定理可得:sinAcosC+sinCcosA=-2sinBcosA,
化为:sin(A+C)=sinB=2sinBcosA,sinB≠0,
可得cosA=-$\frac{1}{2}$,A∈(0,π),
∴A=$\frac{2π}{3}$;
(2)由a=2$\sqrt{3}$,b+c=4,
由余弦定理,得a2=b2+c2-2bccosA,
∴12=(b+c)2-2bc-2bccos$\frac{2π}{3}$,
即有12=16-bc,
化为bc=4.
故△ABC的面积为S=$\frac{1}{2}$bcsinA=$\frac{1}{2}$×4×sin$\frac{2π}{3}$=$\sqrt{3}$.

点评 本题考查了正弦定理、余弦定理、和差公式、三角形面积计算公式,考查了化简整理的能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=|2x-1|+|2x-3|,x∈R.
(1)解不等式f(x)≤6;
(2)若不等式6m2-4m<f(x)对任意x∈R都成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设点A,B的坐标分别为(-6,0),(6,0),直线AM,BM相交于点M,且它们的斜率之积是$\frac{4}{9}$,则动点M的轨迹加上A,B两点所表示的曲线是(  )
A.B.椭圆C.抛物线D.双曲线

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知F1、F2分别是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点,过F2与双曲线的一条渐近线平行的直线交双曲线另一条渐近线于点M,若点M在以线段F1F2为直径的圆上,则该双曲线的离心率为(  )
A.3B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知P为抛物线y2=8x上一点,F为该抛物线焦点,若A点坐标为(3,2),则|PA|+|PF|最小值为(  )
A.$\sqrt{5}$B.5C.7D.11

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.直线x+y=c与圆x2+y2=8相切,则正实数c的值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知抛物线y2=6x的交点为F,准线为l,过点F的直线与抛物线交于点M,N,与l交于点P,若$\overrightarrow{MF}$=2$\overrightarrow{FN}$,O是坐标原点,则|OP|=(  )
A.$\sqrt{13}$B.$\sqrt{63}$C.$\frac{4\sqrt{33}}{3}$D.$\frac{3\sqrt{33}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数$y=sin(2x+\frac{π}{3}-2m)(m>0)$为偶函数,则m的最小值为(  )
A.$\frac{π}{12}$B.$\frac{π}{3}$C.$\frac{5π}{12}$D.$\frac{7π}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设函数f(x)=$\frac{{e}^{2}{x}^{2}+1}{x}$,g(x)=$\frac{{e}^{2}x}{{e}^{x}}$,对任意${x_1},{x_2}∈({\frac{1}{e},+∞})$,不等式$\frac{{g({x_1})}}{k}<\frac{{f({x_2})}}{k+2}$恒成立,则正数k的取值范围是(  )
A.(1,+∞)B.[1,+∞)C.(2,+∞)D.[2,+∞)

查看答案和解析>>

同步练习册答案