精英家教网 > 高中数学 > 题目详情
1.任取$k∈[-\sqrt{3},\sqrt{3}]$,直线y=k(x+2)与圆x2+y2=4相交于A,B两点,则$\left|{\left.{AB}\right|}\right.≥2\sqrt{3}$的概率为(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{3}}}{2}$C.$\frac{1}{3}$D.$\frac{{\sqrt{3}}}{3}$

分析 由圆的方程找出圆心坐标和半径r,利用点到直线的距离公式表示出圆心到直线y=k(x+2)的距离d,由r及d,根据垂径定理及勾股定理表示出弦AB的长,令AB的长大于等于2$\sqrt{3}$,列出关于k的不等式,求出不等式的解集得到k的范围,根据已知k的范围,利用几何概型即可求出|AB|≥2$\sqrt{3}$的概率.

解答 解:由圆x2+y2=4,得到圆心为(0,0),半径等于2,
圆心到直线y=k(x+2)的距离d=$\frac{|2k|}{\sqrt{1{+k}^{2}}}$,
由弦长公式得:|AB|=2$\sqrt{4-\frac{{4k}^{2}}{1{+k}^{2}}}$≥2$\sqrt{3}$,
解得:-$\frac{\sqrt{3}}{3}$≤k≤$\frac{\sqrt{3}}{3}$,
又-$\sqrt{3}$≤k≤$\sqrt{3}$,
则|AB|≥2$\sqrt{3}$的概率为$\frac{1}{3}$.
故选:C.

点评 此题考查了直线与圆的位置关系,涉及的知识有:圆的标准方程,点到直线的距离公式,垂径定理,勾股定理,其他不等式的解法,以及几何概型,当直线与圆相交时,常常根据垂径定理由垂直得中点,然后由弦长的一半,圆的半径及弦心距构造直角三角形,利用勾股定理来解决问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.如图所示,已知平面四边形ABCD为凸四边形(凸四边形即任取平面四边形一边所在直线,其余各边均在此直线的同侧),且AB=1,BC=3,CD=4,DA=2,则平面四边形ABCD面积的最大值为$2\sqrt{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.抛物线的准线方程是$y=\frac{1}{2}$,则其标准方程是(  )
A.y2=2xB.x2=-2yC.y2=-xD.x2=-y

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,四边形ABCD是矩形,MD⊥平面ABCD,NB∥MD,且AD=2,NB=1,CD=MD=3.
(1)过B作平面BFG∥平面MNC,平面BFG与CD、DM分别交于F、G,求AF与平面MNC所成角的正弦值;
(2)E为直线MN上一点,且平面ADE⊥平面MNC,求$\frac{ME}{MN}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若${(\sqrt{x}-\frac{a}{x})^n}$展开式中所有二项式系数之和是64,常数项为15,则实数a的值是±1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.一个物体的运动方程为s=t2-t+2(其中s的单位是米,t的单位是秒),那么物体在t=4秒的瞬时速度是(  )
A.6米/秒B.7米/秒C.8米/秒D.9米/秒

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.平面向量$\overrightarrow{a}$=(1,-2),$\overrightarrow{b}$=(-2,x),若$\overrightarrow{a}$⊥$\overrightarrow{b}$,则x=(  )
A.-1B.1C.-4D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.双曲线$\frac{{x}^{2}}{4}$-y2=1的离心率为(  )
A.$\frac{1}{2}$B.$\sqrt{5}$C.$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{5}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.等差数列{an}中,若a3+a5+a7=15,则S9=45.

查看答案和解析>>

同步练习册答案