精英家教网 > 高中数学 > 题目详情

【题目】正项数列{an}的前n项和Sn满足:Sn2﹣(n2+n﹣1)Sn﹣(n2+n)=0
(1)求数列{an}的通项公式an
(2)令bn= ,求数列{bn}的前n项和Tn , 证明:对于任意的n∈N* , 都有Tn

【答案】
(1)解:∵Sn2﹣(n2+n﹣1)Sn﹣(n2+n)=0,

∴(Sn﹣(n2+n))(Sn+1)=0,

∴Sn=n2+n,或Sn=﹣1(舍去),

故正项数列{an}为等差数列,

其中a1=1+1=2,a2=S2﹣S1=4,

故an=2+2(n﹣1)=2n;


(2)解:∵bn= = ),

∴Tn= (1﹣ + + +…+

= (1+

= + );

故Tn


【解析】(1)因式分解可得(Sn﹣(n2+n))(Sn+1)=0,从而求得Sn=n2+n,从而判断出{an}为等差数列,从而解得;(2)裂项bn= = ),从而求其前n项和证明不等式即可.
【考点精析】本题主要考查了数列的前n项和和数列的通项公式的相关知识点,需要掌握数列{an}的前n项和sn与通项an的关系;如果数列an的第n项与n之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2+2ax+2,x∈[﹣5,5].
(1)当a=﹣1时,求函数f(x)的单调递增区间;
(2)求实数a的取值范围,使y=f(x)在区间[﹣5,5]上是单调函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】公差不为零的等差数列{an}中,a3=7,又a2 , a4 , a9成等比数列.
(1)求数列{an}的通项公式.
(2)设bn=2 ,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【2017湖南长沙二模】已知函数.

1证明:,直线都不是曲线的切线;

2,使成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面内,定点A、B、C、D满足:| |=| |=| |, = = =﹣2,动点P、M满足:| |=1, = ,则| |的最大值是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【2017广东佛山二模】设函数,其中是自然对数的底数.

上的增函数,求的取值范围;

,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设 =(1,﹣2), =(a,﹣1), =(﹣b,0)(a>0,b>0,O为坐标原点),若A、B、C三点 共线,则 的最小值是(
A.4
B.
C.8
D.9

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若一三角形三边所在的直线方程分别为x+2y﹣5=0,y﹣2=0,x+y﹣4=0,则能够覆盖此三角形且面积最小的圆的方程为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列{an}的前项和为Sn , 且Sn= ,{bn}为等差数列,且a1=b1 , a2(b2﹣b1)=a1
(1)求数列{an}和{bn}通项公式;
(2)设 ,求数列{cn}的前n项和Tn

查看答案和解析>>

同步练习册答案