精英家教网 > 高中数学 > 题目详情
设直线与抛物线交于两点.
(1)求线段的长;(2)若抛物线的焦点为,求的值.
(1)(2)

试题分析:(1)由得:,解出,于是, 
所以两点的坐标分别为
线段的长:     ……6分
(2)抛物线的焦点为,由(1)知,
于是,      ……12分
点评:直线与圆锥曲线相交求弦长,常联立方程组,利用韦达定理找到根与系数的关系,从而使计算简化,针对于此题数据较简单,亦可直接接触两交点坐标,而后代入弦长公式
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

在直接坐标系xOy中,直线L的方程为x-y+4=0,曲线C的参数方程为.
(1)已知在极坐标(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,点P的极坐标为(4,),判断点P与直线L的位置关系;
(2)设点Q是曲线C上的一个动点,求它到直线l的距离的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆上的一点P,到椭圆一个焦点的距离为3,则P到另一焦点距离为(    )
A.2B.3C.5D.7

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

方程+=1({1,2,3,4,…,2013})的曲线中,所有圆面积的和等于       ,离心率最小的椭圆方程为                      .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若点O和点F(﹣2, 0)分别是双曲线的中心和左焦点,点P为双曲线右支上的任意一点,则的取值范围为
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

椭圆的焦点坐标是______________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

短轴长为,离心率e=的椭圆的两焦点为F1、F2,过F1作直线交椭圆于A、B两点,则△ABF2周长为_____________。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在直角坐标系xOy中,椭圆C1: ="1" (a>b>0)的左、右焦点分别为F1、F2, F2也是抛物线C2:y2=4x的焦点,点M为C1与C2在第一象限的交点,且|MF2|=.
(1)求C1的方程;
(2)直线l∥OM,与C1交于A、B两点,若·=0,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知点M是圆C:上的一点,且轴,为垂足,点满足,记动点的轨迹为曲线E.
(Ⅰ)求曲线E的方程;
(Ⅱ)若AB是曲线E的长为2的动弦,O为坐标原点,求面积S的最大值.

查看答案和解析>>

同步练习册答案