精英家教网 > 高中数学 > 题目详情
4.已知函数f(x)=ax3+bx2+cx+d(a≠0),设f′(x)是函数f(x)的导函数,f″(x)是函数f′(x)的导函数,若方程f″(x)=0有实数解x0,则称点(x0,f(x0))为函数y=f(x)的“拐点”.任何一个三次函数都有“拐点”,且其“拐点”恰好就是该函数的对称中心,设函数f(x)=$\frac{1}{3}$x3-$\frac{1}{2}$x2+3x-$\frac{5}{12}$,则f($\frac{1}{2016}$)+f($\frac{2}{2016}$)+…+f($\frac{2014}{2016}$)+f($\frac{2015}{2016}$)=(  )
A.2016B.2015C.2014D.1007.5

分析 根据函数f(x)的解析式求出f′(x)和f″(x),令f″(x)=0,求得x的值,由此求得函数f(x)的对称中心,得到f(1-x)+f(x)=2,即可得出.

解答 解:依题意,得:f′(x)=x2-x+3,
∴f″(x)=2x-1.
由f″(x)=0,即2x-1=0.
∴x=$\frac{1}{2}$,
∴f($\frac{1}{2}$)=1,
∴f(x)=$\frac{1}{3}$x3-$\frac{1}{2}$x2+3x-$\frac{5}{12}$,的对称中心为($\frac{1}{2}$,1)
∴f(1-x)+f(x)=2,
∴f($\frac{1}{2016}$)+f($\frac{2}{2016}$)+…+f($\frac{2014}{2016}$)+f($\frac{2015}{2016}$)=2015.
故选:B.

点评 本题主要考查函数与导数等知识,考查化归与转化的数学思想方法,考查化简计算能力,函数的对称性的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.在直角坐标系中,定义两点P(x1,y1)与Q(x2,y2)之间的“直角距离”为d(P,Q)=|x1-x2|+
|y1-y2|,现给出四个命题:
(1)已知P(1,3),Q(sin2α,cos2α)(α∈R),则d(P,Q)为定值;
(2)已知P,Q,R三点不共线,则必有d(P,Q)+d(Q,R)>d(P,R);
(3)用|PQ|表示P,Q两点间的距离,那么|PQ|≥$\frac{{\sqrt{2}}}{2}$d(P,Q);
(4)若P,Q是椭圆$\frac{x^2}{9}+\frac{y^2}{4}$=1上的任意两点,则d(P,Q)的最大值是2$\sqrt{13}$.
在以上命题中,你认为正确的命题有①③④.(只填写所有正确的命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.△ABC中,cos(A-B)+sin(A+B)=2,则△ABC的形状是(  )
A.等边三角形B.等腰钝角三角形C.等腰直角三角形D.锐角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知函数f(x)是R上的减函数,且y=f(x-2)的图象关于点(2,0)成中心对称.若不等式f(a+sinθ)+f(2+cos2θ)≥0 对任意θ∈R恒成立,则a的取值范围是(-∞,-$\frac{25}{8}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在锐角三角形ABC中,若tanA,tanB,tanC依次成等差数列,则tanAtanC的值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.一种集合A={3,5,x},B={2},若A∪B=A,则实数x的值为(  )
A.-2B.2C.3D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知Sn=${∫}_{0}^{n}$(x2+2x+$\frac{2}{3}$)dx是数列{an}的前n项和,求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=lnx-$\frac{a(x+1)}{x}$,试讨论函数f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.为了解某市甲、乙、丙三所学校高三数学模拟考试成绩,采取分层抽样方法,从甲校1400份试卷、乙校640份试卷、丙校800份试卷中进行抽样调研.若从丙校800份试卷中抽取了40份试卷,则这次高三共抽查的试卷份数为142.

查看答案和解析>>

同步练习册答案