【题目】如图,在边长为
的正方形
中,线段BC的端点
分别在边
、
上滑动,且
,现将
,
分别沿AB,AC折起使点
重合,重合后记为点
,得到三被锥
.现有以下结论:
![]()
①
平面
;
②当
分别为
、
的中点时,三棱锥
的外接球的表面积为
;
③
的取值范围为
;
④三棱锥
体积的最大值为
.
则正确的结论的个数为( )
A.
B.
C.
D.![]()
【答案】C
【解析】
根据题意得,折叠成的三棱锥P﹣ABC的三条侧棱满足PA
PB、PA
PC,由线面垂直的判断定理得①正确;三棱锥P﹣ABC的外接球的直径等于以PA、PB、PC为长、宽、高的长方体的对角线长,由此结合AP=2、BP=CP=1,得外接球的半径R=
,由此得三棱锥P﹣ABC的外接球的体积,故②正确;由题意得
,
,
,在
中,由边长关系得
,故③正确;由等体积转化
计算即可,故④错误.
由题意得,折叠成的三棱锥P﹣ABC的三条侧棱满足PA
PB、PA
PC,
在①中,由PA
PB,PA
PC,且PB
PC
,所以
平面
成立,故①正确;
在②中,当
分别为
、
的中点时,三棱锥P﹣ABC的三条侧棱两两垂直,三棱锥P﹣ABC的外接球直径等于以PA、PB、PC为长、宽、高的长方体的对角线长,结合AP=2、BP=CP=
,
得外接球的半径R=
,所以外接球的表面积为
,故②正确;
在③中,正方形
的边长为2,所以
,
,
,在
中,由边长关系得
+
,解得
,故③正确;
在④中,正方形
的边长为2,且
,则
,
所以
在
上递减,无最大值,故④错误.
故选:C
科目:高中数学 来源: 题型:
【题目】若椭圆
的焦点在x轴上,离心率为
,依次连接
的四个顶点所得四边形的面积为40.
(1)试求
的标准方程;
(2)若曲线M上任意一点到
的右焦点的距离与它到直线
的距离相等,直线
经过
的下顶点和右顶点,
,直线
与曲线M相交于点P、Q(点P在第一象限内,点Q在第四象限内),设
的下顶点是B,上顶点是D,且
,求直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
的值域为A,
.
(1)当
的为偶函数时,求
的值;
(2) 当
时,
在A上是单调递增函数,求
的取值范围;
(3)当
时,(其中
),若
,且函数
的图象关于点
对称,在
处取 得最小值,试探讨
应该满足的条件.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学习小组在研究性学习中,对昼夜温差大小与绿豆种子一天内出芽数之间的关系进行研究该小组在4月份记录了1日至6日每天昼夜最高、最低温度(如图1),以及浸泡的100颗绿豆种子当天内的出芽数(如图2).
![]()
![]()
根据上述数据作出散点图,可知绿豆种子出芽数(颗)和温差具有线性相关关系.
附:
,![]()
(1)求绿豆种子出芽数(颗)关于温差的回归方程;
(2)假如4月1日至7日的日温差的平均值为11℃,估计4月7日浸泡的10000颗绿豆种子一天内的出芽数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
的右焦点为
,过点
的直线(不与
轴重合)与椭圆
相交于
,
两点,直线
:
与
轴相交于点
,过点
作
,垂足为D.
(1)求四边形
(
为坐标原点)面积的取值范围;
(2)证明直线
过定点
,并求出点
的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某经销商从某养殖场购进某品种河蟹,并随机抽取了 100只进行统计,按重量分类统计,得到频率分布直方图如下:
![]()
(1)记事件
为“从这批河蟹中任取一只,重量不超过120克”,估计
;
(2)试估计这批河蟹的平均重量;
(3)该经销商按有关规定将该品种河蟹分三个等级,并制定出销售单价如下:
等级 | 特级 | 一级 | 二级 |
重量 |
|
|
|
单价(元/只) | 40 | 20 | 10 |
试估算该经销商以每千克至多花多少元(取整)收购这批河蟹,才能获利?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(12分)若数列{an}是的递增等差数列,其中的a3=5,且a1,a2,a5成等比数列,
(1)求{an}的通项公式;
(2)设bn=
,求数列{bn}的前项的和Tn.
(3)是否存在自然数m,使得
<Tn<
对一切n∈N*恒成立?若存在,求出m的值;
若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com