精英家教网 > 高中数学 > 题目详情

(本小题满分14分)
已知四棱锥的底面为平行四边形,分别是棱的中点,平面与平面交于,求证:

(1)平面
(2)

(1)对于线面平行的证明主要是根据线面平行的判定定理来,关键是解决 的平行的证明即可。
(2) 平面平面,则结合面面平行的性质定理得到线线平行,比较容易得到结论。

解析试题分析:证明:(1)如图,取的中点,连接

分别是的中点,

平面平面
平面
的中点,四边形是平行四边形,

平面平面
平面

平面平面
平面
平面.  
(2)平面平面,且平面平面
平面平面           
 
考点:线面平行,和线线平行
点评:解决的关键是对于线面平行和线线平行的判定定理的运用,属于基础题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图梯形ABCD,AD∥BC,∠A=900,过点C作CE∥AB,AD=2BC,AB=BC,,现将梯形沿CE
折成直二面角D-EC-AB.
(1)求直线BD与平面ABCE所成角的正切值;
(2)设线段AB的中点为,在直线DE上是否存在一点,使得∥面BCD?若存在,请指出点的位置,并证明你的结论;若不存在,请说明理由;
   

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,三棱柱的所有棱长都为2,中点,平面

(1)求证:平面
(2)求二面角的余弦值;
(3)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
三棱锥中,,

(1) 求证:面
(2) 求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题共13分)
如图所示,正方形与矩形所在平面互相垂直,,点E为的中点。

(Ⅰ)求证:     
(Ⅱ) 求证:
(Ⅲ)在线段AB上是否存在点,使二面角的大小为?若存在,求出的长;若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
在边长为2的正方体中,EBC的中点,F的中点

(1)求证:CF∥平面
(2)求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
如图,在四边形ABCD中,AC平分∠DAB,∠ABC=600,AC=7,AD=6,S△ADC=
求AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分13分)
如图,四边形为矩形,平面上的点,且平面.

(1)求证:
(2)求三棱锥的体积;
(3)设在线段上,且满足,试在线段上确定一点,使得平面.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
如图,棱长为2的正方体中,E,F满足

(Ⅰ)求证:EF//平面AB
(Ⅱ)求证:EF

查看答案和解析>>

同步练习册答案