(本小题满分12分)
三棱锥中,,,
(1) 求证:面面
(2) 求二面角的余弦值.
(1)取BC中点O,连接AO,PO,通过△POA≌△POB≌△POC,得到∠POA=∠POB=∠POC=90°,推出PO⊥面BCD,∴面PBC⊥面ABC。
(2)cos(n1, n2)==。
解析试题分析:(1) 证明:取BC中点O,连接AO,PO,由已知△BAC为直角三角形,
所以可得OA=OB=OC,又知PA=PB=PC,
则△POA≌△POB≌△POC 2分
∴∠POA=∠POB=∠POC=90°,∴PO⊥OB,PO⊥OA,OB∩OA=O
所以PO⊥面BCD, 4分
面ABC,∴面PBC⊥面ABC 5分
(2) 解:过O作OD与BC垂直,交AC于D点,
如图建立坐标系O—xyz
则,,,,
7分
设面PAB的法向量为n1=(x,y,z),由n1· =0,n1·=0,可知n1=(1,-,1)
同理可求得面PAC的法向量为n1=(3,,1) 10分
cos(n1, n2)== 12分
考点:本题主要考查立体几何中的垂直关系,角的计算。
点评:典型题,立体几何题,是高考必考内容,往往涉及垂直关系、平行关系、角、距离、体积的计算。在计算问题中,有“几何法”和“向量法”。利用几何法,要遵循“一作、二证、三计算”的步骤,(2)小题,应用空间向量,使问题解答得以简化。
科目:高中数学 来源: 题型:解答题
如图,在四棱锥中,平面PAD⊥平面ABCD,AB=AD,∠BAD=60°,E、F分别是AP、AD的中点.
求证:(1)直线EF∥平面PCD;
(2)平面BEF⊥平面PAD
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
如图,在三棱锥中,,,,,, 点,分别在棱上,且,
(Ⅰ)求证:平面PAC
(Ⅱ)当为的中点时,求与平面所成的角的正弦值;
(Ⅲ)是否存在点使得二面角为直二面角?并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分13分)
如图1,在等腰梯形中,,,,为上一点, ,且.将梯形沿折成直二面角,如图2所示.
(Ⅰ)求证:平面平面;
(Ⅱ)设点关于点的对称点为,点在所在平面内,且直线与平面所成的角为,试求出点到点的最短距离.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com