【题目】给定椭圆C: (a>b>0).称圆心在原点O,半径为 的圆是椭圆C的“准圆”.若椭圆C的一个焦点为F( ,0),其短轴上的一个端点到点F的距离为 .
(1)求椭圆C的方程和其“准圆”方程;
(2)点P是椭圆C的“准圆”上的一个动点,过动点P作直线l1 , l2 , 使得l1 , l2与椭圆C都只有一个交点,试判断l1 , l2是否垂直,并说明理由.
【答案】
(1)解:由题意可得,c= , =a= ,
则b2=a2﹣c2=1,
则椭圆C的方程为 +y2=1.
其“准圆”方程为x2+y2=4
(2)解:①设P(± ,±1),则过P的直线l1:x=± ,
则l2的斜率k≠0,即它们不垂直;
②设P(m,n)(m≠± ),m2+n2=4,过P的直线为y﹣n=k(x﹣m),
联立椭圆方程,消去y,得到
(1+3k2)x2+6k(n﹣km)x+3(n﹣km)2﹣3=0,
由于直线与椭圆C都只有一个交点,则△=0,
即36k2(n﹣km)2﹣4(1+3k2)3[(n﹣km)2﹣1]=0,
化简得,(3﹣m2)k2+2kmn+1﹣n2=0,
k1k2= = =﹣1.
即l1,l2垂直.
综上,当P在直线x= 上时,l1,l2不垂直;
当P不在直线x= 上时,l1,l2垂直
【解析】(1)由题意可得,c= ,a= ,则b2=a2﹣c2=1,从而得到椭圆方程和其“准圆”方程;(2)讨论当P在直线x= 上时,显然不垂直;当P不在直线x= 上时,设出直线方程,联立椭圆方程,消去y,得到关于x的方程,运用判别式为0,化简整理,得到关于k的方程,求出两根之积,判断是否为﹣1,即可判断
l1 , l2垂直.
【考点精析】本题主要考查了椭圆的标准方程的相关知识点,需要掌握椭圆标准方程焦点在x轴:,焦点在y轴:才能正确解答此题.
科目:高中数学 来源: 题型:
【题目】数列{an}中,a1=8,a4=2,且满足an+2﹣2an+1+an=0,n∈N* .
(1)求数列{an}的通项;
(2)设Sn=|a1|+|a2|+…+|an|,求Sn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司生产甲、乙两种桶装产品.已知生产甲产品1桶需耗原料1千克、原料2千克;生产乙产品1桶需耗原料2千克, 原料1千克.每桶甲产品的利润是300元,每桶乙产品的利润是400元.公司在生产这两种产品的计划中,要求每天消耗原料都不超过12千克.通过合理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是__________元.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆: 的左顶点为,右焦点为,过点且斜率为1的直线交椭圆于另一点,交轴于点, .
(1)求椭圆的方程;
(2)过点作直线与椭圆交于两点,连接(为坐标原点)并延长交椭圆于点,求面积的最大值及取最大值时直线的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com