精英家教网 > 高中数学 > 题目详情
12.已知函数f(x)=x2-2a2lnx(a>0).
(1)若f(x)在x=1处取得极值,求实数a的值;
(2)求函数f(x)的单调区间.

分析 (1)利用极值点的导函数为零,求出参数的值,再通过单调性验证参数适合题意;
(2)利用导函数值的正负求出函数的单调区间.

解答 解:(1)f(x)=x2-2a2lnx(a>0)的定义域为(0,+∞).
f′(x)=$\frac{2(x+a)(x-a)}{x}$,
∵f(x)在x=1处取得极值,
∴f′(1)=0,解得a=1或a=-1(舍).
∴a=1.
当a=1时,x∈(0,1),f′(x)<0;
x∈(1,+∞),f′(x)>0,
所以a的值为1.
(2)令f′(x)=0,解得x=a或x=-a(舍).
当x在(0,+∞)内变化时,f′(x),f(x)的变化情况如下:

x(0,a)a(a,+∞)
f′(x)-0+
f(x)极小值
由上表知f(x)的单调递增区间为(a,+∞),单调递减区间为(0,a).

点评 本题考查的是导函数知识,包括导函数与单调性、导函数与极值,考查了学生分析问题、解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.利用下列盈利表中的数据进行决策,应选择的方案是(  )
自然状况
方案
盈利(万元)
概率
A1A2A3A4
S10.255070-2098
S20.3065265282
S30.45261678-10
A.A1B.A2C.A3D.A4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=|x+1|+|x-2|.
(1)若f(x)<5成立,求实数x的取值范围;
(2)若?x∈R满足不等式f(x)<a2-5a-3,求实数a取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=$\frac{2}{3}{x^3}-2a{x^2}$-3x,a∈R.证明:当|a|≤$\frac{1}{4}$时,f(x)在(-1,1)内是减函数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.袋中有6个红球、4个白球,从袋中任取4个球,则至少有2个白球的概率是(  )
A.$\frac{23}{42}$B.$\frac{1}{7}$C.$\frac{17}{42}$D.$\frac{5}{42}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数y=-3cos2x+4sinx+5,其中x是三角形中的一个内角,求函数y的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设集合U={1,2,3,4,5,6},A={1,3},B={2,3,4},则图中阴影部分所表示的集合是(  )
A.{4}B.{2,4}C.{4,5}D.{1,3,4}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.函数f(x)=ax2+c(a≠0),若${∫}_{0}^{1}$f(x)dx=f(x0),其中-1<x0<0,则x0等于-$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.记min{a,b}=$\left\{\begin{array}{l}{b,a≥b}\\{a,a<b}\end{array}\right.$,当正数x、y变化时,t=min{x,$\frac{y}{{x}^{2}+{y}^{2}}$}也在变化,则t的最大值为$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

同步练习册答案