分析 先推导$\frac{y}{{x}^{2}+{y}^{2}}$=$\frac{1}{\frac{{x}^{2}}{y}+y}$≤$\frac{1}{2\sqrt{\frac{{x}^{2}}{y}•y}}$,再分当x≥$\frac{1}{2x}$与当x≤$\frac{y}{{x}^{2}+{y}^{2}}$≤$\frac{1}{2x}$两种情况探讨最值.
解答 解:$\frac{y}{{x}^{2}+{y}^{2}}$=$\frac{1}{\frac{{x}^{2}}{y}+y}$≤$\frac{1}{2\sqrt{\frac{{x}^{2}}{y}•y}}$=$\frac{1}{2x}$,
当x≥$\frac{1}{2x}$时,即x≥$\frac{\sqrt{2}}{2}$时,t=min{x,$\frac{y}{{x}^{2}+{y}^{2}}$}=$\frac{y}{{x}^{2}+{y}^{2}}$,而$\frac{y}{{x}^{2}+{y}^{2}}$≤$\frac{1}{2x}$≤x≤$\frac{\sqrt{2}}{2}$,
当x≤$\frac{y}{{x}^{2}+{y}^{2}}$≤$\frac{1}{2x}$时,也即0<x≤$\frac{\sqrt{2}}{2}$时,t=min{x,$\frac{y}{{x}^{2}+{y}^{2}}$}=x,而x≤$\frac{\sqrt{2}}{2}$,
综上t的最大值为$\frac{\sqrt{2}}{2}$.
故答案为:$\frac{\sqrt{2}}{2}$.
点评 本题主要考查了函数的取最值的问题,理解新定义函数的意义,并能运用分类讨论的数学思想去解题是解决问题的关键.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ?x0∈R,${e^{x_0}}$<0 | |
| B. | 函数$f(x)={x^2}-{log_{\frac{1}{2}}}$x的零点个数为2 | |
| C. | 若p∨q为真命题,则p∧q也为真命题 | |
| D. | 命题“若m>0,则方程x2+x-m=0有实数根”的逆否命题为:“若方程x2+x-m=0无实数根,则m≤0” |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 30° | B. | 60° | C. | 30°或150° | D. | 60°或120° |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com