精英家教网 > 高中数学 > 题目详情
20.已知函数f(x)=$\frac{2}{3}{x^3}-2a{x^2}$-3x,a∈R.证明:当|a|≤$\frac{1}{4}$时,f(x)在(-1,1)内是减函数.

分析 当$|a|≤\frac{1}{4}$时,证明f(x)在(-1,1)内是减函数?当$|a|≤\frac{1}{4}$时,证明f′(x)<0在(-1,1)内恒成立.

解答 证明:∵$f(x)=\frac{2}{3}{x^3}-2a{x^2}-3x$,∴f′(x)=2x2-4ax-3是二次函数,
∵$|a|≤\frac{1}{4}$,x∈(-1,1)时,$\left\{{\begin{array}{l}{f′(-1)=4(a-\frac{1}{4})≤0}\\{f′(1)=-4(a+\frac{1}{4})≤0}\end{array}}\right.$,
又f′(x)是开口向上的抛物线,由二次函数的性质,
∴?x∈(-1,1),f′(x)<0,
∴f(x)在(-1,1)内是减函数.

点评 本题考查利用导数研究函数的单调性,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.若函数f(x)=loga(2x2+x)(a>0,a≠1)在区间($\frac{1}{2}$,1)内恒有f(x)<0,则f(x)的单调递增区间是(  )
A.(-∞,-$\frac{1}{4}$)B.(-$\frac{1}{4}$,+∞)C.(-∞,-$\frac{1}{2}$)D.(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.函数y=$\frac{1}{3}$x3-x2+5在x=1处的切线倾斜角为(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{3π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知直线l是曲线y=x3在点(1,1)处的切线,
(1)求l的方程;
(2)求直线l与x轴、直线x=2所围成的三角形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.cos15°的值为(  )
A.$\frac{{\sqrt{6}-\sqrt{2}}}{4}$B.$\frac{{\sqrt{6}+\sqrt{2}}}{4}$C.$2-\sqrt{3}$D.$2+\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若角α终边在第二象限,则π-α所在的象限是(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=x2-2a2lnx(a>0).
(1)若f(x)在x=1处取得极值,求实数a的值;
(2)求函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.某机构为了研究人的脚的大小与身高之间的关系,随机测量了20人,得到如下数据
身高(厘米)192164172177176159171166182166
脚长(码)48384043443740394639
身高(厘米)169178167174168179165170162170
脚长(码)43414043404438423941
(1)若“身高大于175厘米”的为“高个”,“身高小于等于175厘米”的为“非高个”;“脚长大于42码”的为“大脚”,“脚长小于等于42码”的为“非大脚”,请根据上表数据完成下面的2×2列联表.
(2)根据(1)中的2×2列联表,试运用独立性检验的思想方法:能否在犯错误的概率不超过0.01的前提下认为脚的大小与身高之间有关系.
高个非高个合计
大脚
非大脚12
合计20
参考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d
参考数据:
P(k2>k)0.500.400.250.150.100.050.0250.0100.0050.001
  k0.4550.7081.3232.0722.7063.845.0246.6357.87910.83

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知(1-2x)n的展开式中,奇数项的二项式系数之和是64,则(1-2x)n的展开式中,x4的系数为560.

查看答案和解析>>

同步练习册答案