精英家教网 > 高中数学 > 题目详情
15.函数$y=|{log_2}x|-{(\frac{1}{2})^{|x|}}$的零点个数为(  )
A.0B.1C.2D.4

分析 将方程的解的个数转化为两个函数的交点问题,通过图象即可解答.

解答 解:函数y=|log2x|-${(\frac{1}{2})}^{|x|}$的零点个数,是方程|log2x|-${(\frac{1}{2})}^{|x|}$=0的实数根的个数,
即|log2x|=${(\frac{1}{2})}^{|x|}$,
令f(x)=|log2x|,g(x)=${(\frac{1}{2})}^{|x|}$,
画出函数的图象,如图所示:

由图象得:f(x)与g(x)有2个交点,
∴方程|log2x|-${(\frac{1}{2})}^{|x|}$=0解的个数为2个,
故选:C.

点评 本题考查了函数零点的应用问题,也考查了转化思想,数形结合思想的应用问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.若关于x的不等式$\sqrt{9-{x}^{2}}$≤k(x+1)的解集为区间[a,b],且b-a≥2,则实数k的取值范围为[$\sqrt{2}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.下列函数中,在区间(0,+∞)上为增函数的是(  )
A.$y=\frac{{\sqrt{x}}}{2}$B.y=(x-1)2C.y=2-xD.y=log0.5x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.为了研究钟表与三角函数的关系,建立如图所示的坐标系,设秒针指向位置P(x,y),若初如位置为${P_0}(\frac{{\sqrt{3}}}{2},\frac{1}{2})$,秒针从P0(注:此时t=0)开始沿顺时针方向走动,则点P的纵坐标y与时间t的函数关系为(  )
A.$y=sin(\frac{π}{30}t+\frac{π}{6})$B.$y=sin(-\frac{π}{60}t-\frac{π}{6})$C.$y=sin(-\frac{π}{30}t+\frac{π}{6})$D.$y=sin(-\frac{π}{30}t-\frac{π}{6})$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.为了了解高一学生的体能情况,某校抽取部分学生进行一部分跳绳次数测试,将所得数据整理后,画出频率分布直方图(如图所示),图中从左到右各小长方形面积之比为2:4:17:15:9:3,第二小组频数为12,若次数在110以上(含110次)为达标,试估计该学校全体高一学生单调达标率是0.88.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知$\overrightarrow a=(m+1,0,2),\overrightarrow b=(6,2n-1,2m)$,若$\overrightarrow a∥\overrightarrow b$,则mn=1或-$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知$\overrightarrow{a}$=(2,m),$\overrightarrow{b}$=(-1,m),若(2$\overrightarrow{a}$-$\overrightarrow{b}$)⊥$\overrightarrow{b}$,则|$\overrightarrow{a}$|=(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数$f(x)=\frac{{a-{e^x}}}{{1+a{e^x}}}$,其中a为常数.
(1)若a=1,判断函数f(x)的奇偶性;
(2)若函数$f(x)=\frac{{a-{e^x}}}{{1+a{e^x}}}$在其定义域上是奇函数,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知tanα=-$\frac{3}{4}$,且tan(α+β)=1,则tanβ的值为(  )
A.-7B.7C.-$\frac{3}{4}$D.$\frac{3}{4}$

查看答案和解析>>

同步练习册答案