精英家教网 > 高中数学 > 题目详情
7.已知$\overrightarrow{a}$=(2,m),$\overrightarrow{b}$=(-1,m),若(2$\overrightarrow{a}$-$\overrightarrow{b}$)⊥$\overrightarrow{b}$,则|$\overrightarrow{a}$|=(  )
A.2B.3C.4D.5

分析 化简可得2$\overrightarrow{a}$-$\overrightarrow{b}$=(5,m),故(5,m)•(-1,m)=0,从而求得m2=5,从而求|$\overrightarrow{a}$|.

解答 解:2$\overrightarrow{a}$-$\overrightarrow{b}$=2(2,m)-(-1,m)=(5,m),
∵(2$\overrightarrow{a}$-$\overrightarrow{b}$)⊥$\overrightarrow{b}$,
∴(5,m)•(-1,m)=0,
即5-m2=0,即m2=5,
故|$\overrightarrow{a}$|=$\sqrt{{2}^{2}+{m}^{2}}$=3;
故选:B.

点评 本题考查了平面向量的线性运算及数量积的应用,同时考查了向量的模的求法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=$\left\{\begin{array}{l}{sinx,0≤x≤\frac{π}{2}}\\{1,\frac{π}{2}≤x≤2}\\{x-1,2≤x≤4}\end{array}\right.$先画出函数图,求在[0,4]上的定积分.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.(1)若(x2-1)+(x2+3x+2)i是纯虚数(i为虚数单位),求实数x的值;
(2)已知z的共轭复数为$\overline z$,且${({z+\overline z})^2}$$-3z\overline z•i=4-12i$(i为虚数单位),求复数z.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.函数$y=|{log_2}x|-{(\frac{1}{2})^{|x|}}$的零点个数为(  )
A.0B.1C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知角α的终边经过点(-6,8),则cosα=(  )
A.$\frac{4}{5}$B.$\frac{3}{5}$C.$-\frac{3}{5}$D.$-\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)是R上的奇函数,且x>0时,f(x)=-x2+2x.
(1)求f(x)的解析式;
(2)在如图的直角坐标系中画出函数求f(x)的图象,并求不等式f(x)≥0的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知l,m是两条不同的直线,α,β是两个不同的平面,给出下列条件:
①α∩β=l,m与α、β所成角相等
②α⊥β,l⊥α,m∥β
③l,m与平面α所成角之和为90°
④α∥β,l⊥α,m∥β
⑤PA⊥α于A,P∈l,l∩α=B(B不同于P),m?α,AB⊥m
其中可判断l⊥m的条件的序号是④⑤.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知不等式mx2+nx-$\frac{1}{m}$<0的解集为{x|x<-$\frac{1}{2}$或x>2},则m-n=(  )
A.$\frac{1}{2}$B.-$\frac{5}{2}$C.$\frac{5}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.如图,函数$y=\frac{1}{x}$、y=x、y=1的图象和直线x=1将平面直角坐标系的第一象限分成八个部分:①②③④⑤⑥⑦⑧.若幂函数f(x)的图象经过的部分是④⑧,则f(x)可能是(  )
A.y=x2B.$y=\frac{1}{{\sqrt{x}}}$C.$y={x^{\frac{1}{2}}}$D.y=x-2

查看答案和解析>>

同步练习册答案