分析 (1)根据函数奇偶性的定义进行判断.
(2)根据函数是奇函数,建立方程关系进行求解即可.
解答 解:(1)当a=1时,$f(x)=\frac{{1-{e^x}}}{{1+{e^x}}}$,其定义域为R.
此时对任意的x∈R,都有$f(-x)=\frac{{1-{e^{-x}}}}{{1+{e^{-x}}}}=\frac{{{e^x}-1}}{{{e^x}+1}}=-\frac{{1-{e^x}}}{{1+{e^x}}}=-f(x)$
所以函数f(x)在其定义域上为奇函数.
(2)若函数$f(x)=\frac{{a-{e^x}}}{{1+a{e^x}}}$在其定义域上是奇函数,则对定义域内的任意x,
有:$f(-x)=\frac{{a-{e^{-x}}}}{{1+a{e^{-x}}}}=\frac{{a{e^x}-1}}{{{e^x}+a}}=-f(x)=\frac{{{e^x}-a}}{{1+a{e^x}}}$
整理得:a2e2x-1=e2x-a2,即:e2x(a2-1)=1-a2对定义域内的任意x都成立.
所以a2=1
当a=1时,$f(x)=\frac{{1-{e^x}}}{{1+{e^x}}}$,定义域为R;
当a=-1时,$f(x)=\frac{{-1-{e^x}}}{{1-{e^x}}}=\frac{{{e^x}+1}}{{{e^x}-1}}$,定义域为(-∞,0)∪(0,+∞).
所以实数a的值为a=1或a=-1.
点评 本题主要考查函数奇偶性的判断,利用函数奇偶性的定义建立方程关系是解决本题的关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | -$\frac{5}{2}$ | C. | $\frac{5}{2}$ | D. | -$\frac{1}{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com