精英家教网 > 高中数学 > 题目详情
13.已知函数f(x)=xlnx,若f′(x)=2,则x=e.

分析 先求导,再代值得到lnx=1,解得即可.

解答 解:f′(x)=1+lnx,
∵f′(x)=2,
∴1+lnx=2,
即lnx=1=lne,
∴x=e,
故答案为:e.

点评 本题主要考查导数的计算以及对数方程,要求熟练掌握常见函数的导数公式,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.为了研究钟表与三角函数的关系,建立如图所示的坐标系,设秒针指向位置P(x,y),若初如位置为${P_0}(\frac{{\sqrt{3}}}{2},\frac{1}{2})$,秒针从P0(注:此时t=0)开始沿顺时针方向走动,则点P的纵坐标y与时间t的函数关系为(  )
A.$y=sin(\frac{π}{30}t+\frac{π}{6})$B.$y=sin(-\frac{π}{60}t-\frac{π}{6})$C.$y=sin(-\frac{π}{30}t+\frac{π}{6})$D.$y=sin(-\frac{π}{30}t-\frac{π}{6})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数$f(x)=\frac{{a-{e^x}}}{{1+a{e^x}}}$,其中a为常数.
(1)若a=1,判断函数f(x)的奇偶性;
(2)若函数$f(x)=\frac{{a-{e^x}}}{{1+a{e^x}}}$在其定义域上是奇函数,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知条件p:|x+1|>2,条件q:|x|>a,且¬p是¬q的必要不充分条件,则实数a的取值范围是(  )
A.0≤a≤1B.1≤a≤3C.a≤1D.a≥3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知平面向量$\overrightarrow{a}$=(2,1),$\overrightarrow{c}$=(1,-1),若向量$\overrightarrow{b}$满足($\overrightarrow{a}$-$\overrightarrow{b}$)∥$\overrightarrow{c}$,($\overrightarrow{a}$+$\overrightarrow{c}$)⊥$\overrightarrow{b}$,则向量$\overrightarrow{b}$=(  )
A.(2,1)B.(1,2)C.(3,0)D.(0,3)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.以vcm3/秒的恒定速度往高为H的杯中注水,水深h是时间t的函数,其图象如图,则此杯的形状可能是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知tanα=-$\frac{3}{4}$,且tan(α+β)=1,则tanβ的值为(  )
A.-7B.7C.-$\frac{3}{4}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.圆心为(1,-2),半径为4的圆的方程是(  )
A.(x+1)2+(y-2)2=16B.(x-1)2+(y+2)2=16C.(x+1)2+(y-2)2=4D.(x-1)2+(y+2)2=4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在△ABC中,角A、B、C所对的边分别为a、b、c,已知sinB=cosA•sinC,并且三边长a、b、c成等差数列.
(I)求cosB的值;
(Ⅱ)若G是△ABC的重心,求cos∠AGC的值.

查看答案和解析>>

同步练习册答案