精英家教网 > 高中数学 > 题目详情
14.若m为区间[-1,5]上任意一个实数,则方程x2+2x+m=0有实数根的概率是$\frac{1}{3}$.

分析 由题意知方程的判别式大于等于零求出m的范围,再判断出所求的事件符合几何概型,再由几何概型的概率公式求出所求事件的概率.

解答 解:若方程x2+2x+m=0有实根,则△=4-4m≥0,
解得,m≤1;
∵记事件A:“m为区间[-1,5]上任意一个实数,则方程x2+2x+m=0有实数根”,
由方程x2+2x+m=0有实根符合几何概型,
∴P(A)=$\frac{1+1}{5+1}$=$\frac{1}{3}$.
故答案为:$\frac{1}{3}$.

点评 本题考查了求几何概型下的随机事件的概率,即求出所有实验结果构成区域的长度和所求事件构成区域的长度,再求比值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知函数$f(x)=\frac{{a-{e^x}}}{{1+a{e^x}}}$,其中a为常数.
(1)若a=1,判断函数f(x)的奇偶性;
(2)若函数$f(x)=\frac{{a-{e^x}}}{{1+a{e^x}}}$在其定义域上是奇函数,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知tanα=-$\frac{3}{4}$,且tan(α+β)=1,则tanβ的值为(  )
A.-7B.7C.-$\frac{3}{4}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.圆心为(1,-2),半径为4的圆的方程是(  )
A.(x+1)2+(y-2)2=16B.(x-1)2+(y+2)2=16C.(x+1)2+(y-2)2=4D.(x-1)2+(y+2)2=4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数$f(x)={log_{\frac{1}{2}}}({x^2}-2ax+3)$.
(1)若函数的定义域为R,求实数a的取值范围;
(2)若函数的值域为(-∞,-1],求实数a的取值范围;
(3)若函数在区间$(\frac{1}{2},1)$上为增函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.送检的两批灯管在运输途中各打碎1支,若每批10支,而第一批中有1支次品,第二批中有2支次品,现从剩下的灯管中任取1支,问抽得次品的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知直线l的参数方程为$\left\{\begin{array}{l}{x=1+2t}\\{y=\frac{1}{2}-t}\end{array}\right.$,曲线C的参数方程为$\left\{\begin{array}{l}{x=2cosθ}\\{y=sinθ}\end{array}\right.$,设直线l与曲线C交于两点A,B
(1)将直线1和曲线C化为普通方程;
(2)若P(1,$\frac{1}{2}$),求|PA|+|PB|,及|PA|•|PB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在△ABC中,角A、B、C所对的边分别为a、b、c,已知sinB=cosA•sinC,并且三边长a、b、c成等差数列.
(I)求cosB的值;
(Ⅱ)若G是△ABC的重心,求cos∠AGC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.哈尔滨文化公园的摩天轮始建于2003年1月15日,2003年4月30日竣工,是当时中国第一高的巨型摩天轮,其旋转半径50米,最高点距地地面110米,运行一周大约21分钟.某人在最低点的位置坐上摩天轮,则第14分钟时他距地面大约为85米.

查看答案和解析>>

同步练习册答案