精英家教网 > 高中数学 > 题目详情
9.已知函数$f(x)={log_{\frac{1}{2}}}({x^2}-2ax+3)$.
(1)若函数的定义域为R,求实数a的取值范围;
(2)若函数的值域为(-∞,-1],求实数a的取值范围;
(3)若函数在区间$(\frac{1}{2},1)$上为增函数,求实数a的取值范围.

分析 (1)根据对数函数的性质,求出函数g(x)的最小值大0,解不等式即可;
(2)根据复合函数的单调性得到g(x)的最小值是2,求出a的值即可;
(3)结合函数的单调性得到关于a的不等式组,解出即可.

解答 解:记g(x)=x2-2ax+3=(x-a)2+3-a2
(1)由题意知g(x)>0对x∈R恒成立,
∴$g{(x)_{min}}=3-{a^2}>0$
解得$-\sqrt{3}<a<\sqrt{3}$
∴实数a的取值范围是$(-\sqrt{3},\sqrt{3})$.-----------(4分)
(2)由函数$y={log_{\frac{1}{2}}}u$是减函数及函数$f(x)={log_{\frac{1}{2}}}({x^2}-2ax+3)$的值域为(-∞,-1]
可知   x2-2ax+3≥2.
由(1)知g(x)的值域为[3-a2,+∞),
∴$g{(x)_{min}}=3-{a^2}=2$.
∴a=±1.-----------(8分)
(3)由题意得$\left\{\begin{array}{l}a≥1\\{1^2}-2a×1+3≥0\end{array}\right.$,解得1≤a≤2,
∴实数a的取值范围是[1,2].-----------(12分)

点评 本题考查了对数函数、二次函数的性质,考查复合函数的单调性问题,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.已知l,m是两条不同的直线,α,β是两个不同的平面,给出下列条件:
①α∩β=l,m与α、β所成角相等
②α⊥β,l⊥α,m∥β
③l,m与平面α所成角之和为90°
④α∥β,l⊥α,m∥β
⑤PA⊥α于A,P∈l,l∩α=B(B不同于P),m?α,AB⊥m
其中可判断l⊥m的条件的序号是④⑤.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知函数y=$\frac{sinx}{x}$+$\sqrt{x}$+2,则y′=$\frac{xcosx-sinx}{{x}^{2}}+\frac{1}{2\sqrt{x}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.如图,函数$y=\frac{1}{x}$、y=x、y=1的图象和直线x=1将平面直角坐标系的第一象限分成八个部分:①②③④⑤⑥⑦⑧.若幂函数f(x)的图象经过的部分是④⑧,则f(x)可能是(  )
A.y=x2B.$y=\frac{1}{{\sqrt{x}}}$C.$y={x^{\frac{1}{2}}}$D.y=x-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.若正数x,y满足x+3y=5xy,求:
(1)3x+4y的最小值;
(2)求xy的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若m为区间[-1,5]上任意一个实数,则方程x2+2x+m=0有实数根的概率是$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知u、v∈R,关于x的方程x2+(u+vi)x+1+ui=0至少有一个实数根,求u的最小正值,并求出此时v的值及方程的根.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知数列{an}是等差数列.且a1=2.a1+a2+a3=12.
(1)求数列{an}的通项公式.
(2)令bn=xan(x>0),求数列{bn}的前n项和(用x表示).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.求$\frac{(tan70°-tan10°+tan120°)}{(tan70tan10°)}$的值.

查看答案和解析>>

同步练习册答案