分析 由实际问题设出P与地面高度与时间t的关系,f(t)=Asin(ωt+φ)+B,由题意求出三角函数中的参数A,B,及周期T,利用三角函数的周期公式求出ω,通过初始位置求出φ,求出f(14)的值即可.
解答 解:设P与地面高度与时间t的关系,f(t)=Asin(ωt+φ)+B(A>0,ω>0,φ∈[0,2π)),
由题意可知:A=50,B=110-50=60,T=$\frac{2π}{ω}$=21,∴ω=$\frac{2π}{21}$,即 f(t)=50sin($\frac{2π}{21}$t+φ)+60,
又因为f(0)=110-100=10,即sinφ=-1,故 φ=$\frac{3π}{2}$,∴f(t)=50sin($\frac{2π}{21}$t+$\frac{3π}{2}$)+60,
∴f(14)=50sin($\frac{2π}{21}$×14+$\frac{3π}{2}$)+60=85
故答案为:85.
点评 本题考查通过实际问题得到三角函数的性质,由性质求三角函数的解析式;考查y=Asin(ωx+φ)中参数的物理意义,注意三角函数的模型的应用,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{3}$$\overrightarrow{a}$+$\frac{1}{3}$$\overrightarrow{b}$ | B. | -$\frac{1}{3}$$\overrightarrow{a}$+$\frac{1}{3}$$\overrightarrow{b}$ | C. | $\frac{1}{3}$$\overrightarrow{a}$-$\frac{1}{3}$$\overrightarrow{b}$ | D. | -$\frac{1}{3}$$\overrightarrow{a}$-$\frac{1}{3}$$\overrightarrow{b}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{4}$=1 | B. | $\frac{{y}^{2}}{2}$-$\frac{{x}^{2}}{4}$=1 | C. | $\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{2}$=1 | D. | $\frac{{y}^{2}}{4}$-$\frac{{y}^{2}}{2}$=1 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com