精英家教网 > 高中数学 > 题目详情
12.等比数列{an}的各项均为正数,且a4=4,a6=16,则公比q=(  )
A.-4B.-2C.4D.2

分析 根据等比数列的性质建立方程进行求解即可.

解答 解:a4=4,a6=16,
则q2=$\frac{{a}_{6}}{{a}_{4}}=\frac{16}{4}=4$,
∵等比数列{an}的各项均为正数,
∴q>0,
则q=2,
故选:D

点评 本题主要考查等比数列性质的应用,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.给出下列命题:
①若等比数列{an}的前n项和为Sn,则S100,S200-S100,S300-S200成等比数列;
②将三进制数201102(3)化为八进制数,结果为1014(8)
③已知等差数列{an},{bn}的前n项和分别为An,Bn,且满足$\frac{{A}_{n}}{{B}_{n}}$=$\frac{2n}{n+3}$,则$\frac{{a}_{1}{+a}_{2}{+a}_{12}}{{b}_{2}{+b}_{4}{+b}_{9}}$=$\frac{3}{2}$;
④用秦九韶算法求多项式f(x)=7x3+3x2-5x+11在x=2时的值,在运算过程中,一定会出现数值221;
⑤等差数列{an}中,Sn是它的前n项之和,且,则S6<S7,S8<S7,则S9一定小于S6,且S7一定是Sn中的最大值.
其中正确的是②③⑤(把你认为正确的命题序号都填上).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若曲线f(x)=acosx+sinx与曲线g(x)=x2+bx+1在交点(0,m)处有公切线,则a+b=(  )
A.-lB.0C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知函数f(x)=f′($\frac{π}{2}$)sinx-cosx,则f($\frac{π}{6}$)=$\frac{1-\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知向量$\overrightarrow{m}$=(sinA,cosA),$\overrightarrow{n}$=(1,-10),且$\overrightarrow{m}$•$\overrightarrow{n}$=0
(Ⅰ)求tanA的值;
(Ⅱ)求函数f(x)=cos2x+tanAsinx(x∈R)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知$\overrightarrow{a}$=(sin2x,cos2x),$\overrightarrow{b}$=(1,$\sqrt{3}$),且f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$,求f(x)单调递增区间[kπ$-\frac{5π}{12}$,$kπ+\frac{π}{12}$],k∈Z.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若$\frac{1+7i}{2-i}$=a+bi(a,b∈R,i为虚数单位),则ab等于(  )
A.-15B.-3C.3D.15

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在△ABC中,内角A,B,C所对的边分别为a,b,c,且acosB-bcosA=$\frac{1}{2}$c,则当角C的值为$\frac{π}{2}$时,tan(A-B)取最大值$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图所示,某企业拟建造一个体积为V的圆柱型的容器(不计厚度,长度单位:米).已知圆柱两个底面部分每平方米建造费用为a千元,侧面部分每平方米建造费用为2a千元.假设该容器的建造费用仅与其表面积有关,设圆柱的底面半径为r,该容器的总建造费用为y千元.
(1)写出y关于r的函数表达式;
(2)求该容器总建造费用最小时r的值.

查看答案和解析>>

同步练习册答案