【题目】已知圆
与圆
相外切,且与直线
相切.
(1)记圆心
的轨迹为曲线
,求
的方程;
(2)过点
的两条直线
与曲线
分别相交于点
和
,线段
和
的中点分别为
.如果直线
与
的斜率之积等于1,求证:直线
经过定点.
【答案】(1)
(2)见解析
【解析】
(1)根据抛物线定义可知圆心
的轨迹为抛物线,进而可得其轨迹方程.
(2)由题意可设直线
的斜率为
,则直线
的斜率为
,表示出直线
的方程,联立直线与抛物线方程即可求得交点
的坐标,进而以
代替点
坐标中的
,可得点
的坐标;即可表示出直线
的斜率及其方程,进而得所过定点的坐标.
(1)依题意
等于
到直线
的距离,
故所求轨迹是以
为焦点,以
为准线的抛物线.
故其轨迹
的方程为
.
(2)依题意直线
斜率都存在且均不为
,
故设直线
的斜率为
,则直线
的斜率为
.
直线
的方程为
,
即为
.
由
消去
整理得
,
所以
,点
的坐标为
,
以
代替点
坐标中的
,可得点
的坐标为
,
所以直线
的斜率
,
所以直线
的方程为
,
即
.
故
经过定点
.
科目:高中数学 来源: 题型:
【题目】“业务技能测试”是量化考核员工绩效等级的一项重要参考依据.某公司为量化考核员工绩效等级设计了A,B两套测试方案,现各抽取
名员工参加A,B两套测试方案的预测试,统计成绩(满分
分),得到如下频率分布表.
成绩频率 |
|
|
|
|
|
|
|
方案A |
|
|
|
|
|
|
|
方案B |
|
|
|
|
|
|
|
(1)从预测试成绩在
的员工中随机抽取
人,记参加方案A的人数为
,求
的最有可能的取值;
(2)由于方案A的预测试成绩更接近正态分布,该公司选择方案A进行业务技能测试.测试后,公司统计了若干部门测试的平均成绩
与绩效等级优秀率
,如下表所示:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
根据数据绘制散点图,初步判断,选用
作为回归方程.令
,经计算得
,
,
.
(ⅰ)若某部门测试的平均成绩为
,则其绩效等级优秀率的预报值为多少?
(ⅱ)根据统计分析,大致认为各部门测试平均成绩
,其中
近似为样本平均数
,
近似为样本方差
,求某个部门绩效等级优秀率不低于
的概率为多少?
参考公式与数据:(1)
,
,
.
(2)线性回归方程
中,
,
.
(3)若随机变量
,则
,
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}是单调递增的等差数列,a2+a4=14且a2﹣1,a3+1,a4+7成等比数列.
(1)求数列{an}的通项公式;
(2)设数列
的前n项和为Sn.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】当急需住院人数超过医院所能收治的病人数量时就会发生“医疗资源挤兑”现象,在新冠肺炎爆发期间,境外某市每日下班后统计住院人数,从中发现:该市每日因新冠肺炎住院人数均比前一天下班后统计的住院人数增加约25%,但每日大约有200名新冠肺炎患者治愈出院,已知该市某天下班后有1000名新冠肺炎患者住院治疗,该市的医院共可收治4000名新冠肺炎患者,若继续按照这样的规律发展,该市因新冠肺炎疫情发生“医疗资源挤兑”现象,只需要约( )
参考数据:
.
A.7天B.10天C.13天D.16天
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】动圆
过定点
,且在
轴上截得的弦
的长为4.
(1)若动圆圆心
的轨迹为曲线
,求曲线
的方程;
(2)在曲线
的对称轴上是否存在点
,使过点
的直线
与曲线
的交点
满足
为定值?若存在,求出点
的坐标及定值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线
上的点到点
的距离比到直线
的距离小
,
为坐标原点.
(1)过点
且倾斜角为
的直线与曲线
交于
、
两点,求
的面积;
(2)设
为曲线
上任意一点,点
,是否存在垂直于
轴的直线
,使得
被以
为直径的圆截得的弦长恒为定值?若存在,求出
的方程和定值;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com