精英家教网 > 高中数学 > 题目详情

中,内角的对边分别为,且
(1)求角的大小;
(2)若,求的面积.

(1);(2)

解析试题分析:(1)三角形中的化简问题,涉及边角混合的方程,往往需要利用正弦定理或余弦定理进行边角转化,该题中利用正弦定理将边转化为角,得,即
,进而求A;(2)由(1)得,联系结论,不难想到,故求成为解题关键,由余弦定理,得,求得,进而求的面积.
试题解析:(1)由及余弦定理或正弦定理可得
所以
(2)由余弦定理a2=b2+c2-2bccosA,得b2+c2-bc=36.又b+c=8,所以bc=
由三角形面积公式S=bcsinA,得△ABC的面积为
考点:1、正弦定理;2、两角和的三角函数;3、余弦定理.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

在△ABC中,角A,B,C的对边分别为,且
(1)求的值;(2)求c的值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在△中,角所对的边长分别为

(1)若,求的值;
(2)若,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在△中,角的对边分别为,且
(1)求角的大小;
(2)若,求边的长和△的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,扇形,圆心角的大小等于,半径为2,在半径上有一动点,过点作平行于的直线交弧于点.

(1)若是半径的中点,求线段的长;
(2)设,求面积的最大值及此时的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(1)求的最小正周期和值域;
(2)在锐角△中,角的对边分别为,若,求

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的图像上两相邻最高点的坐标分别为.
(1)求的值;
(2)在中,分别是角的对边,且,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在△ABC中,角A,B,C的对边分别为a,b,c,C=,a=5,△ABC的面积为10.
(1)求b,c的值;
(2)求cos的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

己知函数处取最小值.
(1)求的值。
(2)在△ABC中,a、b、c分别是A、B、C的对边,已知a=l,b=,求角C.

查看答案和解析>>

同步练习册答案