精英家教网 > 高中数学 > 题目详情

已知函数的图像上两相邻最高点的坐标分别为.
(1)求的值;
(2)在中,分别是角的对边,且,求的取值范围.

(1);(2).

解析试题分析:(1)首先用诱导公式将展开再化一得:.由于图像上两相邻最高点间的距离为一个周期,又由题设知两相邻最高点间的坐标分别为,由此得,周期,由即可得.(2)由可得.用正弦定理可将化为一个只含角C的三角函数式:
.
由于,所以,据此范围即可求出的范围.
试题解析:(1)
由题意知.                                          (4分)
(2),
                                        (8分)
      (10分)
       (12分)
考点:1、三角恒等变换;2、正弦定理;3、三角函数的性质

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设△ABC的内角ABC所对的边长分别为abc,且
(1)求角A的大小;
(2)若角边上的中线AM的长为,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

的图像与直线相切,并且切点横坐标依次成公差为的等差数列.
(1)求的值;
(2)ABC中a、b、c分别是∠A、∠B、∠C的对边.若是函数 图象的一个对称中心,且a=4,求ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

中,内角的对边分别为,且
(1)求角的大小;
(2)若,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)若,求的取值范围;
(2)设△的内角A、B、C所对的边分别为a、b、c,已知为锐角,,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设△ABC的内角A,B,C所对的边分别为a,b,c,且a+c=6,b=2,cosB=.
(1)求a,c的值;
(2)求sin(A-B)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在中,,点的中点, 求:

(1)边的长;
(2)的值和中线的长

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在锐角△ABC中,角A,B,C所对的边分别为a,b,c,向量m=(1,cosB),n=(sinB,-),且m⊥n.
(1)求角B的大小.
(2)若△ABC的面积为,a=2,求b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,测量河对岸的塔高AB时,可以选与塔底B在同一水平面内的两个测点C与D,现测得∠BCD=α,∠BDC=β,CD=s,并在点C测得塔顶A的仰角为θ,求塔高AB.

查看答案和解析>>

同步练习册答案