精英家教网 > 高中数学 > 题目详情

在△中,角的对边分别为,且
(1)求角的大小;
(2)若,求边的长和△的面积.

(1),(2)

解析试题分析:(1)解三角形问题,通常利用正余弦定理解决.因为,由正弦定理得:,从而有,又因为大角对大边,而,因此角B为锐角,.(2)已知一角两边,所以由余弦定理得解得(舍),再由三角形面积公式得.
试题解析:解:(1)因为
所以,                          2分
因为,所以
所以,                               4分
因为,且,所以.             6分
(2)因为
所以由余弦定理得,即
解得(舍),
所以边的长为.                                   10分
.             13分
考点:正余弦定理

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知向量,设函数
(1)求函数的单调递增区间;
(2)在中,角的对边分别为,且满足,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在△ABC中,已知.求:
(1)AB的值;(2)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)求函数的最小正周期;
(2)在中,若的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

的图像与直线相切,并且切点横坐标依次成公差为的等差数列.
(1)求的值;
(2)ABC中a、b、c分别是∠A、∠B、∠C的对边.若是函数 图象的一个对称中心,且a=4,求ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知甲船正在大海上航行,当它位于A处时获悉,在其正东方向相距20海里的B处有一艘渔船遇险等待营救,甲船立即以10海里/小时的速度匀速前往救援,同时把消息告知在甲船的南偏西,相距10海里C处的乙船,乙船当即决定匀速前往救援,并且与甲船同时到达。(供参考使用:).
(1)试问乙船航行速度的大小;
(2)试问乙船航行的方向(试用方位角表示,如北偏东…度).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

中,内角的对边分别为,且
(1)求角的大小;
(2)若,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设△ABC的内角A,B,C所对的边分别为a,b,c,且a+c=6,b=2,cosB=.
(1)求a,c的值;
(2)求sin(A-B)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在△ABC中,角A,B,C对应的边分别是a,b,c.已知cos2A-3cos(B+C)=1.
(1)求角A的大小;
(2)若△ABC的面积S=5,b=5,求sinBsinC的值.

查看答案和解析>>

同步练习册答案