精英家教网 > 高中数学 > 题目详情

【题目】在三棱锥中, 的中点, 平面,垂足落在线段上,已知.

(1)证明:

(2)在线段上是否存在一点,使得二面角为直二面角?若存在,求出的长;若不存在,请说明理由.

【答案】(1)证明见解析;(2)答案见解析.

【解析】试题分析:对于法一,易得因为平面,推导出,再推导出平面,即可得到答案;对于法二,以为原点,分别以过点与共线同向的向量, 方向上的单位向量为单位正交基建立空间直角坐标系,易求得几何体中各个顶点的坐标,求出 的坐标,要证明,即证明

要求满足条件使得二面角为直二面角的点,即求平面的法向量和平面的法向量互相垂直,由此求出点的坐标,然后根据空间两点之间的距离公式即可求出的长;

解析:(1法一:∵, 的中点,

平面

∵垂足落在线段上,

平面

.

法二:如图,以为原点,分别以过点与共线同向的向量, 方向上的单位向量为单位正交基建立空间直角坐标系,则

(2)假设点存在,设 ,则

设平面的法向量为,平面的法向量为

,可得

,可得

若二面角为直二面角,则,得

解得,∴

故线段上是否存在一点,满足题意, 的长为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|x﹣2|.
(1)解不等式:f(x+1)+f(x+2)<4;
(2)已知a>2,求证:x∈R,f(ax)+af(x)>2恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=x3+ax2+bx(x>0)的图像与x轴相切于M(3,0).
(1)求f(x)的解析式;
(2)是否存在两个不等正数s,t(s<t),当x∈[s,t]时,函数f(x)=x3+ax2+bx的值域也是[s,t],若存在,求出所有这样的正数s,t,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,有一块矩形空地,要在这块空地上开辟一个内接四边形为绿地,使其四个顶点分别落在矩形的四条边上,已知,绿地面积为.

(1)写出关于的函数关系式,并指出这个函数的定义域.

(2)为何值时,绿地面积最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 是抛物线上两点,且两点横坐标之和为3.

(1)求直线的斜率;

(2)若直线,直线与抛物线相切于点,且,求方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,a,b,c分别为A,B,C所对边,a+b=4,(2﹣cosA)tan =sinA.
(1)求边长c的值;
(2)若E为AB的中点,求线段EC的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】联合国教科文组织规定,每年的4月23日是“世界读书日”.某校研究生学习小组为了解本校学生的阅读情况,随机调查了本校400名学生在这一天的阅读时间(单位:分钟),将时间数据分成5组:,并整理得到如下频率分布直方图.

(1)求的值;

(2)试估计该学校所有学生在这一天的平均阅读时间;

(3)若用分层抽样的方法从这400名学生中抽取50人参加交流会,则在阅读时间为的两组中分别抽取多少人?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角梯形ABCD中,AD∥BC,∠A=90°,AB=2AD,若将△ABD沿直线BD折成△A′BD,使得A′D⊥BC,则直线A′B与平面BCD所成角的正弦值是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点R(x0 , y0)在D:y2=2px上,以R为切点的D的切线的斜率为 ,过Γ外一点A(不在x轴上)作Γ的切线AB、AC,点B、C为切点,作平行于BC的切线MN(切点为D),点M、N分别是与AB、AC的交点(如图).

(1)用B、C的纵坐标s、t表示直线BC的斜率;
(2)设三角形△ABC面积为S,若将由过Γ外一点的两条切线及第三条切线(平行于两切线切点的连线)围成的三角形叫做“切线三角形”,如△AMN,再由M、N作“切线三角形”,并依这样的方法不断作切线三角形…,试利用“切线三角形”的面积和计算由抛物线及BC所围成的阴影部分的面积T.

查看答案和解析>>

同步练习册答案