精英家教网 > 高中数学 > 题目详情
若sin(π+α)+cos(
π
2
+α)=-m,求cos(
2
-α)+2sin(2π+α)的值.
考点:运用诱导公式化简求值
专题:三角函数的求值
分析:已知等式左边利用诱导公式化简,求出sinα的值,原式利用诱导公式化简后将sinα的值代入计算即可求出值.
解答: 解:∵sin(π+α)+cos(
π
2
+α)=-sinα-sinα=-m,即sinα=
m
2

∴原式=-sinα+2sinα=sinα=
m
2
点评:此题考查了运用诱导公式化简求值,熟练掌握诱导公式是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列求导运算正确的是(  )
①(x+
1
x
)′=1+
1
x2
 
②(log2x)′=
1
xln2
  
③(3x)′=3xlog3e  
④(x2cosx)′=-2xsinx 
⑤(
ex+1
ex-1
)′=
-2ex
(ex-1)2

⑥(exln(2x-5))′=exln(2x-5)+
ex
2x-5
A、①②③B、②④⑤
C、②⑤D、②⑤⑥

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,抛物线y=x2上异于坐标原点O的两不同动点A、B满足AO⊥BO
(Ⅰ)求证直线A、B恒过定点(0,1)
(Ⅱ)△AOB的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C所对应的边分别为a,b,c,tan
A+B
2
+tan
C
2
=4,2sinBcosC=sinA.
(1)求角A的大小;
(2)若S△ABC=
3
,求边a的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

设向量
a
=(a1,a2),
b
=(b1,b2),定义一种向量积
a
?
b
=(a1,a2)?(b1,b2)=(a1b1,a2b2).已知向量
m
=(2,
1
2
),
n
=(
π
3
,0),点P(x0,y0)为y=sinx的图象上的动点,点Q(x,y)为y=f(x)的图象上的动点,且满足
OQ
=
m
?
OP
+
n
(其中O为坐标原点).
(Ⅰ)请用x0表示
m
?
OP

(Ⅱ)求y=f(x)的表达式并求它的周期;
(Ⅲ)把函数y=f(x)图象上各点的横坐标缩小为原来的
1
4
倍(纵坐标不变),得到函数y=g(x)的图象.设函数h(x)=g(x)-t(t∈R),试讨论函数h(x)在区间[0,
π
2
]内的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:x2+y2-2y-4=0,直线l:y=mx+1-m;
(1)求证:对任意m∈R,直线l与圆C总有两个不同的交点;
(2)求l与圆C交于A,B两点,若|AB|=
17
,求l的倾斜角.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A={-1,1},B={x|x2+mx+n=0},B≠∅且B⊆A,求实数m,n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的角A,B,C所对的边分别为a,b,c,且acosB+
3
bsinA=c

(Ⅰ)求角A的大小;
(Ⅱ)若a=1,
AB
AC
=3
,求b+c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在区间[-π,π]内随机取两个数分别记为a,b,则使得函数f(x)=4x2+4ax-b22有零点的概率为
 

查看答案和解析>>

同步练习册答案