精英家教网 > 高中数学 > 题目详情
如图在单位圆中,已知α、β是坐标平面内的任意两个角,且0≤α-β≤π,
请写出两角差的余弦公式并加以证明.
考点:两角和与差的余弦函数
专题:证明题
分析:设P1(cosα,sinα),P2(cosβ,sinβ),则
OP1
=(cosα,sinα),
OP2
=(cosβ,sinβ),利用向量的数量积的坐标运算及定义即可证得结论
解答: 解:两角差的余弦公式为:cos(α-β)=cosαcosβ+sinαsinβ  …(6分)
证明:设P1(cosα,sinα),P2(cosβ,sinβ),
OP1
=(cosα,sinα),
OP2
=(cosβ,sinβ),
因为
OP1
OP2
=cosαcosβ+sinαsinβ,
又因为
OP1
OP2
=|
OP1
|•|
OP2
|cos(α-β)=1×1cos(α-β)=cos(α-β).
所以cos(α-β)=cosαcosβ+sinαsinβ.…(14分)
点评:本题考查两角和与差的余弦函数,考查向量的数量积的坐标运算及数量积的概念,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}的前n项和为Sn,其中a1=1,Sn+1=2Sn+1,(n∈N*
(1)求数列{an}的通项公式;
(2)设数列{
1
an
}的前n项和为Tn,求满足不等式Tn
9
Sn+1
的n值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax2+x-xlnx(a>0),g(x)=1-
1+alnx
x
(a>0)
(Ⅰ)若函数满足f(1)=2,求g(x)的最小值;
(Ⅱ)若函数f(x)在定义域上是单调函数,求实数a的取值范围;
(Ⅲ)当
1
e
<m<n<1时,试比较
m
n
1+lnm
1+lnn
的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二阶矩阵M有特征值λ=8及对应的一个特征向量
e1
=
1
1
,并且矩阵M对应的变换将点(-1,2)变换成(-2,4).
(1)求矩阵M;
(2)求矩阵M的另一个特征值,及对应的一个特征向量
e2
的坐标之间的关系;
(3)求直线l:2x-4y+1=0在矩阵M的作用下的直线l′的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)化简
1-2sin10°cos10°
cos10°-
1-cos2170°

(2)f(α)=
sin(5π-α)cos(α+
2
)cos(π+α)
sin(α-
2
)cos(α+
π
2
)tan(α-3π)
,求f(-
41π
3
)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2sin(ωx+φ),x∈R(其中ω>0,0<φ<
π
2
)的图象上一个点为M(
8
,-2),相邻两条对称轴之间的距离为
π
2

(1)求f(x)的解析式;
(2)当x∈[0,π]时,求f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

某厂计划生产甲、乙两种产品,甲产品售价50千元/件,乙产品售价30千元/件,生产这两种产品需要A、B两种原料,生产甲产品需要A种原料4吨/件,B种原料2吨/件,生产乙产品需要A种原料3吨/件,B种原料1吨/件,该厂能获得A种原料120吨,B种原料50吨.问生产甲、乙两种产品各多少件时,能使销售总收入最大?最大总收入为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C的圆心在坐标原点,且与直线l1:x-y-2
2
=0相切;
(1)求圆C的标准方程;
(2)过点(1,3)的直线与圆C交于A、B两点,且|AB|=2
3
,求此直线方程;
(3)若与直线l1垂直的直线l与圆C交于不同的B、D两点,且满足∠BOD为钝角,求直线l纵截距的取值范围?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知平面直角坐标系xOy内直线l的参数方程为
x=t
y=t-2
(t为参数),以Ox为极轴建立极坐标系(取相同的长度单位),圆C的极坐标方程为ρ=2
2
sin(θ+
π
4
),则直线l与圆C的位置关系是
 

查看答案和解析>>

同步练习册答案