精英家教网 > 高中数学 > 题目详情
12.设当x=θ时,函数f(x)=sinx-2cosx取得最大值,则cosθ=(  )
A.$\frac{2\sqrt{5}}{5}$B.$\frac{\sqrt{5}}{5}$C.-$\frac{2\sqrt{5}}{5}$D.-$\frac{\sqrt{5}}{5}$

分析 利用辅助角公式化简函数的解析式为函数f(x)=2sinx-cosx=$\sqrt{5}$($\frac{2}{\sqrt{5}}$sinx-$\frac{1}{\sqrt{5}}$cosx)=$\sqrt{5}$sin(x+α),(其中,cosα=$\frac{2}{\sqrt{5}}$,sinα=-$\frac{1}{\sqrt{5}}$),由题意可得θ+α=2kπ+$\frac{π}{2}$,k∈z,即 θ=2kπ+$\frac{π}{2}$-α,k∈z,再利用诱导公式求得cosθ 的值.

解答 解:当x=θ时,函数f(x)=2sinx-cosx=$\sqrt{5}$($\frac{2}{\sqrt{5}}$sinx-$\frac{1}{\sqrt{5}}$cosx)=$\sqrt{5}$sin(x+α)取得最大值,
(其中,cosα=$\frac{2}{\sqrt{5}}$,sinα=-$\frac{1}{\sqrt{5}}$),
∴θ+α=2kπ+$\frac{π}{2}$,k∈z,即 θ=2kπ+$\frac{π}{2}$-α,k∈z,
∴cosθ=cos(2kπ+$\frac{π}{2}$-α)=cos($\frac{π}{2}$-α)=sinα=-$\frac{\sqrt{5}}{5}$,
故选:D.

点评 本题主要考查辅助角公式的应用,正弦函数的最大值,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.如图,⊙O的直径AB的延长线与弦CD的延长线相交于点P,E为⊙O上一点,$\widehat{AE}$=$\widehat{AC}$,DE交AB于点F,且AB=2BP=8,
(1)求PF的长度;
(2)若圆F与圆O 内切,直线PT与圆F切于点T,求线段PT的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.[普通高中]观察下列图形:…由此规律,则第30个图形比第27个图形中的“☆”多(  )
A.59颗B.60颗C.87颗D.89颗

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,在直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=2,AA1=6,点E、F分别在棱BB1、CC1上,且BE=$\frac{1}{3}$BB1,C1F=$\frac{1}{3}$CC1
(1)作出平面AEF与平面ABC的交线l(写出作法),并判断l与平面BCFE的位置关系;
(2)求多面体B1E-AFC1A1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.某传媒学校在我校2013年招收播音专业的学生统计表如表:
性别
专业
非播音专业播音专业
1310
720
判断选择播音专业是否与性别有关系?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设集合A={(x,y)|(x+3)2+(y-4)2=5},B={(x,y)|(x+3)2+(y-4)2=20},C={(x,y)|2|x+3|+|y-4|=λ},若(A∪B)∩C≠∅,则实数λ的取值范围是[$\sqrt{5}$ 10].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.数列{an}中,a1=8,a4=2且满足an+2=2an+1-an(n∈N*),则an=-2n+10,n∈N*

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.己知函数f(x)=alnx+$\frac{{x}^{2}}{2}$-(a+1)x.
(I)当a=-1时,求函数f(x)的单调区间和极值点;
(Ⅱ)若a∈R,求函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.求下列各式中x的值.
(1)log8x=-$\frac{2}{3}$;
(2)logx27=$\frac{3}{4}$;
(3)ax=1(a>0且a≠1);
(4)5lgx=25;
(5)log7[log3(log2x)]=0.

查看答案和解析>>

同步练习册答案