精英家教网 > 高中数学 > 题目详情
7.某传媒学校在我校2013年招收播音专业的学生统计表如表:
性别
专业
非播音专业播音专业
1310
720
判断选择播音专业是否与性别有关系?

分析 根据表中所给的数据,计算观测值K2,对照观测值表,得出概率结论.

解答 解:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$$\frac{50(13×20-10×7)^{2}}{20×30×23×27}$≈4.844>3.841
查表知P(K2≥3.841)=0.05,
∴故95%的把握认为选择播音专业是与性别有关系.

点评 本题考查独立性检验的应用问题,考查计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.设A为n阶可逆矩阵,A*是A的伴随矩阵,则|A*|=(  )
A.|A|B.$\frac{1}{|A|}$C.|A|*D.|A|n-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知在四棱锥S-ABCD中,底面ABCD是菱形,且∠BCD=60°,侧面SAB是正三角形,且面SAB⊥面ABCD,F为SD的中点.
(1)证明:SB∥面ACF;
(2)求面SBC与面SAD所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图所示,AB是⊙O的直径,G为AB延长线上的一点,GCD是⊙O的割线,过点G作AB的垂线,交AC的延长线于点E,交AD的延长线于点F.求证:
(Ⅰ)GB•GA=GE•GF;
(Ⅱ)若AD=GB=OA=1,求GE.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设函数f(x)=$\frac{1}{3}$x3+ax2-8x-1(a<0).若曲线y=f(x)的切线斜率的最小值是-9.求:
(1)a的值;
(2)函数f(x)的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设当x=θ时,函数f(x)=sinx-2cosx取得最大值,则cosθ=(  )
A.$\frac{2\sqrt{5}}{5}$B.$\frac{\sqrt{5}}{5}$C.-$\frac{2\sqrt{5}}{5}$D.-$\frac{\sqrt{5}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若$\overrightarrow{a}$=(3,5cosx),$\overrightarrow{b}$=(2sinx,cosx),则$\overrightarrow{a}$•$\overrightarrow{b}$的范围是[-6,$\frac{34}{5}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若Sn是数列[an}的前n项的和,且Sn=-n2+6n+7,则数列{an}的最大项的值为12.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设f(x)=|2x-1|+|x+1|.
(1)解不等式f(x)≤3;
(2)若不等式m|x|≤f(x)恒成立,求m的取值范围.

查看答案和解析>>

同步练习册答案