精英家教网 > 高中数学 > 题目详情
5.已知$α∈(\frac{π}{2},π)$且$cosα=-\frac{3}{5}$,则$tan(\frac{α}{2}-\frac{π}{4})$=$\frac{1}{3}$.

分析 由已知及二倍角的余弦函数公式可求cos$\frac{α}{2}$,利用同角三角函数基本关系式可求sin$\frac{α}{2}$,tan$\frac{α}{2}$的值,进而利用两角差的正切函数公式即可计算得解.

解答 解:∵$α∈(\frac{π}{2},π)$,且$cosα=-\frac{3}{5}$,
∴$\frac{α}{2}$∈($\frac{π}{4}$,$\frac{π}{2}$),2cos2$\frac{α}{2}$-1=-$\frac{3}{5}$,解得:cos$\frac{α}{2}$=$\frac{\sqrt{5}}{5}$,
∴sin$\frac{α}{2}$=$\frac{2\sqrt{5}}{5}$,tan$\frac{α}{2}$=2,
∴$tan(\frac{α}{2}-\frac{π}{4})$=$\frac{tan\frac{α}{2}-1}{1+tan\frac{α}{2}}$=$\frac{2-1}{1+2}$=$\frac{1}{3}$.
故答案为:$\frac{1}{3}$.

点评 本题主要考查了二倍角的余弦函数公式,同角三角函数基本关系式,两角差的正切函数公式在三角函数化简求值中的应用,考查了计算能力和转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.方程x2+2x-1=0的解可视为函数y=x+2的图象与函数$y=\frac{1}{x}$的图象交点的横坐标,若方程x4+ax-4=0的各个实根x1,x2,…,xk(k≤4)所对应的点$({x_i},\frac{4}{x_i})$(i=1,2,…,k)均在直线y=x的同侧,则实数a的取值范围是(-∞,-6)∪(6,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.若关于x的方程lg(x2+ax)=1在x∈[1,5]上有解,则实数a的取值范围为[-3,9].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.定义在R上的奇函数f(x) 满足f(x-2)=-f(x),则下列结论正确的是(  )
A.f(-2012)>f(2014)B.f(-2012)<f(2014)C.f(-2012)=f(2014)D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.函数f(x)=ln(x+m)-nlnx.
(1)当m=1,n>0时,求函数f(x)的单调减区间;
(2)n=1时,函数g(x)=(m+2x)•f(x)-am,若存在m>0,使得g(x)>0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.公差不为零的等差数列{an}的前n项之和为Sn,且${S_n}={(\frac{{{a_n}+k}}{2})^2}$对n∈N*成立.
(1)求常数k的值以及数列{an}的通项公式;
(2)设数列{an}中的部分项${a_{k_1}},{a_{k_2}},{a_{k_3}},…,{a_{k_n}},…$,恰成等比数列,其中k1=2,k3=14,求kn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.“a<2”是“a2-2a<0”的(  )
A.充分非必要条件B.既不充分也不必要条件
C.充要条件D.必要非充分条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若非零实数a,b,c满足a>b>c,则一定成立的不等式是(  )
A.ac>bcB.ab>acC.a-|c|>b-|c|D.$\frac{1}{a}<\frac{1}{b}<\frac{1}{c}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设复数z1=3+2i,z2=1+bi,其中b∈R,i是虚数单位.
(1)若b=1,z=z1-z2,求z的共轭复数$\overline{z}$;
(2)若z1•z2是纯虚数,求b的值.

查看答案和解析>>

同步练习册答案