精英家教网 > 高中数学 > 题目详情

【题目】已知实数a、b满足:a>0,b>0.
(1)若x∈R,求证:|x+a|+|x﹣b|≥2
(2)若a+b=1,求证: + + ≥12.

【答案】
(1)证明:由a>0,b>0,可得

|x+a|+|x﹣b|≥|(x+a)﹣(x﹣b)|=a+b≥2

当且仅当a=b取得等号


(2)证明:由a,b>0,1=a+b≥2

可得ab≤ ,即 ≥4,

+ + = + = ≥12,

当且仅当a=b= ,取得等号


【解析】(1)运用绝对值不等式的性质和均值不等式,即可得证;(2)由均值不等式可得ab≤ ,即 ≥4,原不等式左边化简即为 ,即可得证.
【考点精析】解答此题的关键在于理解不等式的证明的相关知识,掌握不等式证明的几种常用方法:常用方法有:比较法(作差,作商法)、综合法、分析法;其它方法有:换元法、反证法、放缩法、构造法,函数单调性法,数学归纳法等.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】小王每天自己开车上班,他在路上所用的时间(分钟)与道路的拥堵情况有关.小王在一年中随机记录了200次上班在路上所用的时间,其频数统计如下表,用频率近似代替概率.

(分钟)

15

20

25

30

频数(次)

50

50

60

40

(Ⅰ)求小王上班在路上所用时间的数学期望

(Ⅱ)若小王一周上班5天,每天的道路拥堵情况彼此独立,设一周内上班在路上所用时间不超过的天数为,求的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知A(x0 , 0),B(0,y0)两点分别在x轴和y轴上运动,且|AB|=1,若动点P(x,y)满足
(1)求出动点P的轨迹对应曲线C的标准方程;
(2)一条纵截距为2的直线l1与曲线C交于P,Q两点,若以PQ直径的圆恰过原点,求出直线方程;
(3)直线l2:x=ty+1与曲线C交于A、B两点,E(1,0),试问:当t变化时,是否存在一直线l2 , 使△ABE的面积为 ?若存在,求出直线l2的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知公比小于1的等比数列{an}的前n项和为Sn , a1= ,且13a2=3S3(n∈N*).
(1)求数列{an}的通项公式;
(2)设bn=log3(1﹣Sn+1),若 + +…+ = ,求n.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知两个定点,动点满足.设动点的轨迹为曲线,直线.

(1)求曲线的轨迹方程;

(2)若与曲线交于不同的两点,且为坐标原点),求直线的斜率;

(3)若是直线上的动点,过作曲线的两条切线,切点为,探究:直线是否过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线 =1(a>0,b>0)的左焦点为F,离心率为 .若经过F和P(0,4)两点的直线平行于双曲线的一条渐近线,则双曲线的方程为(  )
A.
=1
B.
=1
C.
=1
D.
=1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线.

1)若,求实数的值;

2)若,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线C:y2=2x,过点(2,0)的直线l交C与A,B两点,圆M是以线段AB为直径的圆.
(Ⅰ)证明:坐标原点O在圆M上;
(Ⅱ)设圆M过点P(4,﹣2),求直线l与圆M的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在同一个平面内,向量 的模分别为1,1, 的夹角为α,且tanα=7, 的夹角为45°.若 =m +n (m,n∈R),则m+n=

查看答案和解析>>

同步练习册答案