【题目】已知直线
和
.
(1)若
,求实数
的值;
(2)若
,求实数
的值.
【答案】(1)
;(2)
.
【解析】
(1)借助两直线垂直的充要条件建立方程求解;(2)借助两直线平行充要条件建立方程求解.
(1)若
,则
.
(2)若
,则
或2.
经检验,
时,
与
重合,
时,符合条件,∴
.
【点晴】
解析几何是运用代数的方法和知识解决几何问题一门学科,是数形结合的典范,也是高中数学的重要内容和高考的热点内容.解答本题时充分运用和借助题设条件中的垂直和平行条件,建立了含参数的直线的方程,然后再运用已知条件进行分析求解,从而将问题进行转化和化归,进而使问题获解.如本题的第一问中求参数
的值时,是直接运用垂直的充要条件建立方程,这是方程思想的运用;再如第二问中求参数的值时也是运用了两直线平行的条件,但要注意的是这个条件不是两直线平行的充要条件,所以一定代回进行检验,这也是学生经常会出现错误的地方.
科目:高中数学 来源: 题型:
【题目】设向量
,
,令函数
,若函数
的部分图象如图所示,且点
的坐标为
.
![]()
(1)求点
的坐标;
(2)求函数
的单调增区间及对称轴方程;
(3)若把方程
的正实根从小到大依次排列为
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,曲线
的参数方程为
(
为参数),在以原点为极点,
轴正半轴为极轴的极坐标系中,直线
的极坐标方程为
.
(1)求曲线
的普通方程和直线
的倾斜角;
(2)设点
,直线
和曲线
交于
两点,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,已知
,
,动点
满足
,设动点
的轨迹为曲线
.
(1)求动点
的轨迹方程,并说明曲线
是什么图形;
(2)过点
的直线
与曲线
交于
两点,若
,求直线
的方程;
(3)设
是直线
上的点,过
点作曲线
的切线
,切点为
,设
,求证:过
三点的圆必过定点,并求出所有定点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,椭圆E:
=1(a>b>0)的离心率为
,焦距为2.(14分)
(Ⅰ)求椭圆E的方程.
(Ⅱ)如图,该直线l:y=k1x﹣
交椭圆E于A,B两点,C是椭圆E上的一点,直线OC的斜率为k2 , 且看k1k2=
,M是线段OC延长线上一点,且|MC|:|AB|=2:3,⊙M的半径为|MC|,OS,OT是⊙M的两条切线,切点分别为S,T,求∠SOT的最大值,并求取得最大值时直线l的斜率.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】校运动会高二理三个班级的3名同学报名参加铅球、跳高、三级跳远3个运动项目,每名同学都可以从3个运动项目中随机选择一个,且每个人的选择相互独立.
(1)求3名同学恰好选择了2个不同运动项目的概率;
(Ⅱ)设选择跳高的人数为
试求
的分布列及数学期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com