精英家教网 > 高中数学 > 题目详情
11.复数z满足$\frac{z}{1-z}$=2i,则z平面内对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

分析 由$\frac{z}{1-z}$=2i,得$z=\frac{2i}{1+2i}$,然后利用复数代数形式的乘除运算化简复数z,求出z在复平面内对应的点的坐标,则答案可求.

解答 解:∵$\frac{z}{1-z}$=2i,
∴$z=\frac{2i}{1+2i}=\frac{2i(1-2i)}{(1+2i)(1-2i)}=\frac{4+2i}{5}$=$\frac{4}{5}+\frac{2}{5}i$,
∴z在复平面内对应的点为:($\frac{4}{5}$,$\frac{2}{5}$),位于第一象限.
故选:A.

点评 本题考查了复数代数形式的乘除运算,考查了复数的代数表示法及其几何意义,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.将两个数a=2,b=4交换,使a=4,b=2,下面语句正确一组是(  )
A.B.C.CD.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知集合A={x|x2≤16},B={y|y=2x},则A∩B=(  )
A.[-4,0)B.(0,4]C.(-4,0)D.(0,4)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.圆x2+y2+4x-2y-1=0关于坐标原点对称的圆的方程是(  )
A.(x+2)2+(y-1)2=6B.(x-2)2+(y-1)2=6C.(x-2)2+(y+1)2=6D.(x+2)2+(y+1)2=6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.等差数列{an}的前n项和为Sn,若S5=5,那么2${\;}^{{a}_{1}}$+2${\;}^{{a}_{5}}$的最小值为(  )
A.4B.2$\sqrt{2}$C.2D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,在三棱柱ABC-A1B1C1中,面ABB1A1为矩形,AB=BC=1,AA1=$\sqrt{2}$,D为AA1的中点,BD与AB1交于点O,BC⊥AB1
(Ⅰ)证明:CD⊥AB1
(Ⅱ)若OC=$\frac{\sqrt{3}}{3}$,求BC与平面ACD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若函数f(x)=$\left\{{\begin{array}{l}{x+1,x≤0}\\{{x^2},x>0}\end{array}}$,则f(2)=4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知集合A={x|ax2-3x-4=0,x∈R}.
(1)若A中有两个元素,求实数a的取值范围;
(2)若A中至多有一个元素,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设点P,Q分别是曲线y=xe-x(e是自然对数的底数)和直线y=x+3上的动点,则P,Q两点间距离的最小值为(  )
A.$\frac{(4e-1)\sqrt{2}}{2}$B.$\frac{(4e+1)\sqrt{2}}{2}$C.$\frac{3\sqrt{2}}{2}$D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

同步练习册答案