| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
分析 由$\frac{z}{1-z}$=2i,得$z=\frac{2i}{1+2i}$,然后利用复数代数形式的乘除运算化简复数z,求出z在复平面内对应的点的坐标,则答案可求.
解答 解:∵$\frac{z}{1-z}$=2i,
∴$z=\frac{2i}{1+2i}=\frac{2i(1-2i)}{(1+2i)(1-2i)}=\frac{4+2i}{5}$=$\frac{4}{5}+\frac{2}{5}i$,
∴z在复平面内对应的点为:($\frac{4}{5}$,$\frac{2}{5}$),位于第一象限.
故选:A.
点评 本题考查了复数代数形式的乘除运算,考查了复数的代数表示法及其几何意义,是基础题.
科目:高中数学 来源: 题型:选择题
| A. | (x+2)2+(y-1)2=6 | B. | (x-2)2+(y-1)2=6 | C. | (x-2)2+(y+1)2=6 | D. | (x+2)2+(y+1)2=6 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | 2$\sqrt{2}$ | C. | 2 | D. | $\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{(4e-1)\sqrt{2}}{2}$ | B. | $\frac{(4e+1)\sqrt{2}}{2}$ | C. | $\frac{3\sqrt{2}}{2}$ | D. | $\frac{\sqrt{2}}{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com