精英家教网 > 高中数学 > 题目详情
19.圆x2+y2+4x-2y-1=0关于坐标原点对称的圆的方程是(  )
A.(x+2)2+(y-1)2=6B.(x-2)2+(y-1)2=6C.(x-2)2+(y+1)2=6D.(x+2)2+(y+1)2=6

分析 吧已知圆的方程化为标准形式,求出圆心关于坐标原点对称的圆的圆心,可得要求的圆的标准方程.

解答 解:圆x2+y2+4x-2y-1=0,即(x+2)2+(y-1)2 =6,它的圆心为(-2,1),
故它关于坐标原点对称的圆的圆心为(2,-1),
故它关于坐标原点对称的圆的方程(x-2)2+(y+1)2 =6,
故选:C.

点评 本题主要考查圆的标准方程,求一个点关于原点的对称点的方法,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.已知$\overrightarrow{OA}$与$\overrightarrow{OB}$不共线,若点C满足$\overrightarrow{OC}$=λ$\overrightarrow{OA}$+(2-λ)$\overrightarrow{OB}$,点C的轨迹是(  )
A.直线B.C.抛物线D.以上都不对

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在曲线y=x2上切线的倾斜角为$\frac{π}{3}$的点是(  )
A.(0,0)B.$(\frac{{\sqrt{3}}}{2},\frac{3}{4})$C.$(\frac{{\sqrt{3}}}{6},\frac{1}{12})$D.$(\frac{{\sqrt{3}}}{3},\frac{1}{3})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知向量$\overrightarrow a$与$\overrightarrow b$满足|$\overrightarrow a$|=|$\overrightarrow b$|=2,且$\overrightarrow b$⊥(2$\overrightarrow a$+$\overrightarrow b}$),则向量$\overrightarrow a$与$\overrightarrow b$的夹角为(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知等差数列{an}的前n项和为Sn,n∈N*,a3=5,S10=100.
(1)求数列{an}的通项公式;
(2)设bn=2an+an•sin2$\frac{nπ}{2}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.函数f(sinx)=cos2x,那么f($\frac{1}{2}$)的值为(  )
A.-$\frac{1}{2}$B.-$\frac{\sqrt{3}}{2}$C.$\frac{1}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.复数z满足$\frac{z}{1-z}$=2i,则z平面内对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.赵州桥是当今世界上建造最早、保存最完整的我国古代单孔敞肩石拱桥(图一).若以赵州桥跨径AB所在直线为x轴,桥的拱高OP所在直线为y轴,建立平面直角坐标系(图二),有桥的圆拱APB所在的圆的方程为x2+(y+20.7)2=27.92.求|OP|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,在直四棱柱ABCD-A1B1C1D1中,底面ABCD为等腰梯形,AB∥CD,AB=4,BC=CD=2,AA1=2,E、E1分别是棱AD、AA1的中点,F是AB的中点.
(1)证明:直线EE1∥平面FCC1
(2)求异面直线EE1和C1F所成的角.

查看答案和解析>>

同步练习册答案