精英家教网 > 高中数学 > 题目详情
19.已知点O(0,0),A(a,0),B(0,a),a是正常数,点P在直线AB上,且$\overrightarrow{AP}$=t•$\overrightarrow{AB}$(0≤t≤1),求$\overrightarrow{OA}•\overrightarrow{OP}$的最大值.

分析 由条件利用两个向量的数量积公式,两个向量坐标形式的运算,求得$\overrightarrow{OA}•\overrightarrow{OP}$的最大值.

解答 解:∵点O(0,0),A(a,0),B(0,a),a是正常数,点P在直线AB上,且$\overrightarrow{AP}$=t•$\overrightarrow{AB}$(0≤t≤1),
∴$\overrightarrow{AP}$=t•$\overrightarrow{AB}$=t(-a,a)=(-ta,ta)=$\overrightarrow{OP}$-$\overrightarrow{OA}$,∴$\overrightarrow{OP}$=$\overrightarrow{OA}$+$\overrightarrow{AP}$=(a-at,ta),
$\overrightarrow{OA}•\overrightarrow{OP}$=(a,0)•(a-at,ta)=a2-a2t,故当t=0时,$\overrightarrow{OA}•\overrightarrow{OP}$取得最大值为a2

点评 本题主要考查两个向量的数量积公式,两个向量坐标形式的运算,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.在一次导弹实验中,为了确定爆炸点的位置,设立了A,B,C三个观测点,已知B在A的正西方向4a米处,C在A的正南方向a米处.实验中,在B,C两点听到导弹着地时的爆炸声比在A点分别晚2秒和1秒,且声速v=a米/秒,则此导弹爆炸点离A点的距离为3a.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.(1)在平面直角坐标系中,A(-$\frac{5}{13}$,$\frac{12}{13}$)是单位圆上一点,将点A沿单位圆按顺时针方向旋转60°,可到达点B,设OA为角α终边,OB为角β终边,且α,β∈(0,π),求sinβ的值
(2)己知α∈($\frac{π}{4}$,$\frac{3π}{4}$),β∈(0,$\frac{π}{4}$),cos($α-\frac{π}{4}$)=$\frac{3}{5}$,sin($\frac{3π}{4}$+β)=$\frac{5}{13}$,求sin(α+β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.下列各组中的两个函数是同一函数的是(  )
A.f(x)=lgx+lg(x-1),g(x)=lg[x(x-1)]B.f(x)=$\frac{\sqrt{1-{x}^{2}}}{|x+2|-2}$,g(x)=$\frac{\sqrt{1-{x}^{2}}}{x}$
C.y=f(x)与y=f(x-3)D.f(x)=|x|+|x-1|,g(x)=2x-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)是偶函数,且当x≥0时,f(x)=log2(x+1)-x2,则f(f(3))=(  )
A.-7B.-46C.7D.46

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.函数f(x)=2sinx的定义域和值域都是[a,b],这样的区间[a,b]有(  )
A.1个B.2个C.3个D.不存在

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知数列{an}的各项均为正数,且满足2an+1+$\frac{1}{{a}_{n+1}}$=an$+\frac{2}{{a}_{n}}$(n∈N*),且使得a1=a2016成立的a1的值是1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知复数z=$\frac{1}{1+i}$+i3(i为虚数单位),则z的虚部为(  )
A.$\frac{3}{2}$B.$\frac{3}{2}$iC.-$\frac{3}{2}$iD.-$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.命题“?x0∈R,$\sqrt{{3}^{{x}_{0}}+1}$≤2”的否定为(  )
A.?x0∈R,$\sqrt{{3}^{{x}_{0}}+1}$>2B.?x0∈R,$\sqrt{{3}^{{x}_{0}}+1}$≥2C.?x∈R,$\sqrt{{3}^{x}+1}$>2D.?x∈R,$\sqrt{{3}^{x}+1}$≥2

查看答案和解析>>

同步练习册答案