精英家教网 > 高中数学 > 题目详情
11.已知直角坐标系xOy中,点A(1,1),M(x,y)为平面区域$\left\{{\begin{array}{l}{x+y≥2}\\{x≤1}\\{y≤2}\end{array}}\right.$内的一个动点,则$\overrightarrow{OA}$•$\overrightarrow{OM}$的最大值为(  )
A.4B.3C.2D.1

分析 利用向量的数量积求出目标函数,作出不等式组表示的可行域,作出与目标函数平行的直线,利用数形结合即可得到结论.

解答 解:∵A(1,1),
∴$\overrightarrow{OA}$•$\overrightarrow{OM}$=x+y,设x+y=z变形y=-x+
画不等式组表示的平面区域,
平移直线y=-x+z,
当直线y=-x+z经过点D(1,2)时,直线y=-x+z的截距最大,此时z最大,
代入x+y=z得到最大值为z=1+2=3.
故选:B.

点评 本题考查线性规划的应用,向量的数量积公式、作不等式组的平面区域、数形结合求出目标函数的最值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.求值:cos180°=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如果复数$\frac{2+bi}{1+2i}$(其中i为虚数单位,b为实数)的实部和虚部互为相反数,那么b等于(  )
A.$\sqrt{2}$B.$\frac{2}{3}$C.$-\frac{2}{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在△ABC中,角A,B,C所对的边分别为a,b,c,且ccosA+acosC=2c,若a=b,则sinB=(  )
A.$\frac{{\sqrt{15}}}{4}$B.$\frac{1}{4}$C.$\frac{{\sqrt{3}}}{4}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若钝角△ABC的三边a,b,c成等差数列且a<b<c,则$\frac{ac}{{b}^{2}}$的取值范围是($\frac{3}{4}$,$\frac{15}{16}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.数列{an}满足:a1=2,a1+2a2+…+nan=$\frac{{(2n+1){S_n}}}{3}$,其中Sn为{an}的前n项和,则an=2n,Sn=n2+n.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知函数f(x)=(sinx+cosx)cosx,则f(-$\frac{π}{24}$)=$\frac{{2+\sqrt{2}}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.《九章算术》商功章有题:一圆柱形谷仓,高1丈3尺,容纳米2000斛(1丈=10尺,斛为容积单位,1斛≈1.62立方尺,π≈3),则圆柱底面周长约为(  )
A.1丈3尺B.5丈4尺C.9丈2尺D.48丈6尺

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设a∈[1,4],b∈[1,4],现随机地抽出一对有序实数对(a,b)使得函数f(x)=4x2+a2与函数g(x)=-4$\sqrt{b}$x的图象有交点的概率为(  )
A.$\frac{5}{27}$B.$\frac{5}{16}$C.$\frac{5}{54}$D.$\frac{1}{9}$

查看答案和解析>>

同步练习册答案