精英家教网 > 高中数学 > 题目详情
3.已知函数f(x)=(sinx+cosx)cosx,则f(-$\frac{π}{24}$)=$\frac{{2+\sqrt{2}}}{4}$.

分析 先根据二倍角公式和两角和的正弦公式f(x)=$\frac{1}{2}$+$\frac{\sqrt{2}}{2}$sin(2x+$\frac{π}{4}$),再代值计算即可.

解答 解:f(x)=(sinx+cosx)cosx=sinxcosx+cos2x=$\frac{1}{2}$sin2x+$\frac{1}{2}$(1+cos2x)=$\frac{1}{2}$+$\frac{\sqrt{2}}{2}$sin(2x+$\frac{π}{4}$),
∴f(-$\frac{π}{24}$)=$\frac{1}{2}$+$\frac{\sqrt{2}}{2}$sin(2×$(-\frac{π}{24})$+$\frac{π}{4}$)=$\frac{1}{2}$+$\frac{\sqrt{2}}{2}$×$\frac{1}{2}$=$\frac{2+\sqrt{2}}{4}$
故答案为:$\frac{{2+\sqrt{2}}}{4}$

点评 本题考查了二倍角公式和两角和的正弦公式,以及函数值,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.据统计一年中一个家庭万元以上的财产被窃的概率为0.005,保险公司开办一年期万元以上家庭财产保险,交保险费100元,若一年内万元以上财产被窃,保险公司赔偿a元(a>1000),为确保保险公司有可能获益,则a的取值范围是(1000,20000).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设变量x,y满足约束条件$\left\{\begin{array}{l}{x+y-2≥0}\\{y≥0}\\{kx+y-3k≤0}\end{array}\right.$,且目标函数z=y-x的最大值是4,则k等于(  )
A.$\frac{4}{3}$B.$\frac{3}{4}$C.-$\frac{4}{3}$D.-$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知直角坐标系xOy中,点A(1,1),M(x,y)为平面区域$\left\{{\begin{array}{l}{x+y≥2}\\{x≤1}\\{y≤2}\end{array}}\right.$内的一个动点,则$\overrightarrow{OA}$•$\overrightarrow{OM}$的最大值为(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知命题p:?x0>0,2x0=3,则¬p是(  )
A.?x∈R,2x≠3B.?x>0,2x≠3C.?x≤0,2x=3D.?x≤0,2x≠3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.函数f(x)=3sinxcosx的最小正周期为π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在数列a0,a1,a2,…,an,…中,已知a0=a1=1,a2=3,an=3an-1-an-2-2an-3(n≥3).
(1)求a3,a4
(2)证明:an>2n-1(n≥2).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.执行如图所示的流程图,会输出一列数,则这列数中的第3个数是30.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.函数y=$\sqrt{{{({\frac{1}{3}})}^{2x}}-1}$的定义域是(-∞,0].

查看答案和解析>>

同步练习册答案