精英家教网 > 高中数学 > 题目详情
18.已知命题p:?x0>0,2x0=3,则¬p是(  )
A.?x∈R,2x≠3B.?x>0,2x≠3C.?x≤0,2x=3D.?x≤0,2x≠3

分析 直接利用特称命题的否定是全称命题写出结果即可.

解答 解:因为特称命题的否定是全称命题,所以命题p:?x0>0,2x0=3,则¬p是:?x>0,2x≠3.
故选:B.

点评 本题考查命题的否定,特称命题与全称命题的否定关系,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知当x∈(1,2)时,不等式x2+x+m<0恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.如图所示,三棱锥P-ABC中,PA⊥平面ABC,△ABC为正三角形,PA=AB,E是PC的中点,则异面直线AE和PB所成角的余弦值为(  )
A.$\frac{1}{6}$B.$\frac{1}{4}$C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若钝角△ABC的三边a,b,c成等差数列且a<b<c,则$\frac{ac}{{b}^{2}}$的取值范围是($\frac{3}{4}$,$\frac{15}{16}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知数列{an}中,a1=1,$\frac{a_n}{{{a_{n+1}}-{a_n}}}$=n(n∈N*),则a2016=2016.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知函数f(x)=(sinx+cosx)cosx,则f(-$\frac{π}{24}$)=$\frac{{2+\sqrt{2}}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.复数z满足z(1-i)=-$\frac{1}{i}$,则复数z的模|z|=$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在△ABC中,角A,B,C的对边分别为a、b、c,已知sinB=$\frac{5}{13}$,且$\overrightarrow{BA}$•$\overrightarrow{BC}$=12.
(1)求△ABC的面积;
(2)若a,b,c成等差数列,求b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若x,y满足约束条件$\left\{\begin{array}{l}{x-1≥0}\\{x-y-2≤0}\\{x+y-4≤0}\end{array}\right.$,则x2+y2的最大值为10.

查看答案和解析>>

同步练习册答案