精英家教网 > 高中数学 > 题目详情
如图,四边形ABCD为菱形,ACFE为平行四边形,且面ACFE⊥面ABCD,AB=BD=2,AE=
3
,设BD与AC相交于点G,H为FG的中点.
(Ⅰ)证明:CH⊥面BFD;
(Ⅱ)若CH=
3
2
,求EF与面EDB所成角的大小.
考点:直线与平面所成的角,直线与平面垂直的判定
专题:空间位置关系与距离,空间角
分析:(Ⅰ)首先根据已知条件利用菱形的性质求出垂直的关系,进一步利用面面垂直得到线线垂直,最后利用线面垂直的判定求出结论.
(Ⅱ)利用上步的结论,先确定线面的夹角,进一步求出角的大小.
解答: (Ⅰ)证明:四边形ABCD为菱形
所以:BD⊥AC
又面ACEF⊥面ABCD
所以:BD⊥平面ACFE
所以:BD⊥CH
即:CH⊥BD
又H为FG的中点,CG=CF=
3

所以:CH⊥FG
所以:CH⊥面BFD.
(Ⅱ)连接EG,由(Ⅰ)知BD⊥平面ACFE
所以:面EFG⊥面BED
所以:EF与平面EDB所成的角即为∠FEG.
在△FCG中,CG=CF=
3
,CH=
3
2
,CH⊥GF
所以∠GCF=120°,GF=3
所以EG=
3
,又因为EF=2
3

所以在△EFG中,可求得∠FEG=60°
点评:本题考查的知识要点:线面垂直的判定,线面的夹角的应用.属于基础题型.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知抛物线C的顶点在原点O,焦点与椭圆
x2
25
+
y2
9
=1的右焦点重合.
(1)求抛物线C的方程;
(2)在抛物线C的对称轴上是否存在定点M,使过点M的动直线与抛物线C相交于P,Q两点时,都有∠POQ=
π
2
.若存在,求出M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,三棱锥S-ABC中,SA⊥AC,AC⊥BC,M为SB的中点,D为AB的中点,且△AMB为正三角形.
(1)求证:DM∥平面SAC;
(2)求证:平面SBC⊥平面SAC;
(3)若BC=4,SB=20,求三棱锥D-MBC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=loga(1+ax)-loga(1-ax),其中a>0,且a≠1.
(1)当a=2时,解不等式f(x)-1>0;
(2)当a>1时,若关于x的不等式f(x)-1>0恒成立,求a的取值范围;
(3)若f(x0)=x0-1,证明|x0|<1.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线C:
x2
a2
-y2=1(a>0)与直线l:x+y=1相交于两个不同的点A(x1,y1),B(x2,y2).
(1)求a的取值范围;
(2)设x1=
5
12
x2,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

规定一种运算“*“:对于任意实数x,y恒有x*x=0,x*(y*z)=(x*y)+z(“+”表示加号),则2013*2014=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,长方体ABCD-A1B1C1D1中,AB=AD=2,AA1=4,点P为面ADD1A1的对角线AD1上的动点(不包括端点).PM⊥平面ABCD交AD于点M,MN⊥BD于点N.
(1)设AP=x,将PN长表示为x的函数;
(2)当PN最小时,求异面直线PN与A1C1所成角的大小.(结果用反三角函数值表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

在空间四边形ABCD中,M,N分别为 BC,CD的中点,O为BD的中点,且AB=BC=CD=DA,求证:MN⊥平面AOC.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的左右焦点为F1、F2,且过点P(3,4),若PF1⊥PF2,则椭圆方程为
 

查看答案和解析>>

同步练习册答案